
www.manaraa.com

Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2005-07-08

Accelerated Ray Traced Animations Exploiting Temporal Accelerated Ray Traced Animations Exploiting Temporal

Coherence Coherence

Darwin Tarry Baines
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Baines, Darwin Tarry, "Accelerated Ray Traced Animations Exploiting Temporal Coherence" (2005). Theses
and Dissertations. 546.
https://scholarsarchive.byu.edu/etd/546

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/546?utm_source=scholarsarchive.byu.edu%2Fetd%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

ACCELERATED RAY TRACED ANIMATIONS EXPLOITING

TEMPORAL COHERENCE

by

Darwin T. Baines

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

August 2005

www.manaraa.com

Copyright © 2005 Darwin T. Baines

All Rights Reserved

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Darwin T. Baines

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

_____________________________ ______________________________
Date Robert P. Burton, Chair

_____________________________ ______________________________
Date Thomas W. Sederberg

_____________________________ ______________________________
Date Yiu-Kai Dennis Ng

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

 As chair of the candidate’s graduate committee, I have read the thesis of Darwin T.
Baines in its final form and have found that (1) its format, citation, and
bibliographical style are consistent and acceptable and fulfill university and
department style require-ments; (2) its illustrative materials including figures, tables,
and charts are in place; and (3) the final manuscript is satisfactory to the graduate
committee and is ready for sub-mission to the university library.

_____________________________ _______________________________
Date Robert P. Burton
 Chair, Graduate Committee

Accepted for the Department

_____________________________ _______________________________
Date David W. Embley
 Graduate Coordinator

Accepted for the College

_____________________________ _______________________________
Date G. Rex Bryce,

Associate Dean, College of Physical and
 Mathematical Sciences

www.manaraa.com

ABSTRACT

 ACCELERATED RAY TRACED ANIMATIONS EXPLOITING

TEMPORAL COHERENCE

Darwin T. Baines

Department of Computer Science

Master of Science

Ray tracing is a well-know technique for producing realistic graphics.

However, the time necessary to generate images is unacceptably long. When

producing the many frames that are necessary for animations, the time is magnified.

Many methods have been proposed to reduce the calculations necessary in ray

tracing. Much of the effort has attempted to reduce the number of rays cast or to

reduce the number of intersection calculations. Both of these techniques exploit

spatial coherence. These acceleration techniques are expanded not only to exploit

spatial coherence but also to exploit temporal coherence in order to reduce

calculations by treating animation information as a whole as opposed to isolating

calculations to each individual frame. Techniques for exploiting temporal coherence

are explored along with associated temporal bounding methods. By first ray tracing a

www.manaraa.com

temporally expanded scene, we are able to avoid traversal calculations in associated

frames where object intersection is limited. This reduces the rendering times of the

associated frames.

www.manaraa.com

ACKNOWLEDGMENTS

Dr. Robert P. Burton provided me every freedom, opportunity, and

encouragement in completing this thesis. The nD research group assisted me in

overcoming roadblocks and provided assistance with mathematical background and

proofs. Dr. Thomas W. Sederberg and Krzysztof Klimaszewski assisted me in

understanding and re-implementing adaptive grids. David Eberly responded helpfully

to emails about current methods used in computer graphics. Andrew Glassner

responded to inquiries related to temporal bounding. My wife Amber gave me

encouragement and support essential to completion of this work.

www.manaraa.com

Table of Content
Chapter 1: Ray Tracing...1

1.1 Introduction...1
1.2 Tracing Rays ...2
1.3 Illumination Model ...3
1.4 Distributed Ray Tracing..4

Chapter 2: Acceleration Techniques...6
2.1 Intersection Acceleration ..6 2.2 Bounding Box Hierarchy ..7
2.3 Grid Traversal ...8
2.4 Hybrid Acceleration Techniques ..9
2.5 Intersection Reduction ..11

Chapter 3: Computer Generated Animation ...13
3.1 Traditional Animation...13
3.2 Modeling and Positioning ...13
3.3 Keyframing ...15
3.4 Rotation Interpolation ...18
3.5 Camera Positioning and Motion ...21

Chapter 4: Adapting Adaptive Grids and Undersampling to Animation..................22
4.1 Bounding Movement ..22
4.2 Exploiting Object Temporal Bounds ..30
4.3 Extending Undersampling Temporally...32
4.4 Combining Adaptive Grids with Undersampling ...33

Chapter 5: Results ...34
5.1 Specifications..34
5.2 Adaptive Grid Exploration..36
5.3 Temporally Adaptive Grids ..39
5.4 Undersampling..43
5.5 Conclusion ..45
5.6 Future Work ..46

Appendix – Sample Frames from Animations..48

 viii

www.manaraa.com

List of Tables
5.1 Test scenes and their properties……………………………………………...35
5.1 Comparison of subvoxel grids and adaptive grids…………………………...38
5.2 Comparison of bounding box surface area…………………………………..39
5.3 Time needed to render scenes using temporally adaptive grids……………..41
5.5 Comparison of temporal adaptive grids and adaptive grids rendering times..42
5.6 Memory comparison of adaptive grids and temporally adaptive grids………43
5.7 A comparison of two and three-dimensional sampling……………………...44
5.8 A comparison of two and three-dimensional sampling error………………..44
5.9 Results of temporally adaptive grids with temporal undersampling………...45

 ix

www.manaraa.com

List of Figures
1.1 Ray path through a scene.……………………………………………………….3
1.2 Ray tree.…………………………………………………………………………3
2.1 A bounding volume hierarchy…………………………………………………..7
2.2a A new box is created to include box A and B………………………………….8
2.2b Box B becomes a child of Box A………………………………………………8
2.3 Grid Traversal…………………………………………………………………...9
2.4 Macro-regions ………………………………………………………………....10
2.5a An undersampling example…………………………………………………...12
2.5b One level of recursion………………………………………………………...12
3.1 A Bézier curve…………………………………………………………………16
3.2 A Catmull-Rom spline…………………………………………………………17
3.3 2D rotation represented by complex numbers…………………………………19
3.4 3D rotation represented by on a unit sphere…………………………………...20
4.1 The convex hull of a Bézier on a sphere may not represent all extrema………28
4.2 Square dots represent the extrema found along the convex hull………………28
4.3 The two lines represent slerps traveling along an extremum………………….30
4.4 Dark cubes represent sampled pixels………………………………………….32

 x

www.manaraa.com

Chapter 1: Ray Tracing

1.1. Introduction

Ray tracing [Whi80] is a technique for producing images of virtual scenes that

contain complex light interaction such as reflection and refraction. Unfortunately

the time needed to render these images is substantial. Because the intersection of

each ray with each object in the scene must be calculated, calculations times can be

very high for complex scenes. This is amplified further by intersection calculations

for secondary rays.

Rendering animations adds further to the complexity of performing these

calculations. An animation is the assembly of static images that, when viewed

sequentially, produces a coherent image that appears to be dynamic.

Several approaches have been taken to reduce rendering times in ray tracing. This

work investigates means of exploiting temporal coherence to reduce further the

rendering times of individual animation frames.

 1

www.manaraa.com

1.2 Tracing Rays

One of the primary focuses of computer graphics is the production of photo-realistic

images. Photorealism usually is achieved by creating a scene and by simulating the

interaction of light and objects in the scene. Ideally, any simulation will model the

transport intensity of light from each point in the scene to all others points in the

scene. This is expressed in the rendering equation[Kaj86]. Unfortunately, with

current processing limitation, simulating even simple scenes in this manner is

impractical. Therefore, rather than attempt to simulate a scene perfectly, computer

graphics techniques often concentrate on certain aspects of lighting simulation that

are relatively important to creating a realistic looking scene. This is true for ray

tracing. Although ray tracing is able to model phenomena such as shadows,

refraction, specular reflection, and diffuse and specular illumination[Whi80], it

does not include light interactions such as diffuse reflection, diffraction, diffuse

transmission (e.g. a lampshade that spreads the light), or indirect specular reflection

or refraction (e.g. a mirror reflecting light onto another object, or a magnifying

glass focusing light). Traditional ray tracing has been extended to address these

light interactions using non-traditional ray tracing techniques [Fuj88][GWS04].

As its name suggests, ray tracing follows the path of light rays as they travel in a

virtual scene. Rather than following rays from the light to the eye, a reverse path

follows the ray from the eye to the light source. This reduces the number of rays

that are calculated by excluding all rays that do not intersect the viewplane. Rays

that initially emanate from the eye and pass through the viewplane are called

primary rays or eye rays. These rays are tested against the objects in the scene to see

if there is any intersection with them and, if so, which intersection is the closest.

Lighting of the object then is calculated for the intersection point. Secondary rays

also are sent out for the purpose of including such things as shadows, reflection, and

refraction in the lighting calculations. This process continues recursively until a

depth tolerance is reached, no intersection is found, or a ray intersects an object that

is neither reflective nor refractive. An example of this is presented in Figure 1.1.

 2

www.manaraa.com

From this a ray tree can be created where any path can be followed from the eye to

its final intersection point, as shown in Figure 1.2.

Figure 1.1 Ray path through a scene. Figure 1.2 Ray tree.

1.3 Illumination Model

As discussed in the previous section, the lighting of a pixel is based on the ray that

originates at the eye, passes through that pixel, and strikes the closest object along

that ray’s path. From that intersection, lighting can be calculated based on diffuse

and specular attributes of the object, and also from recursive calls to reflected and

refracted rays. The lighting equation can be written as

trsda IIIIII ++++= (1.1)

where I is the intensity of the pixel, Id is the intensity of the diffuse component, Is is

the intensity of the specular component, Ir is the contribution of reflection, and It is

the contribution of transmission or refraction. Because the ray tracing algorithm

fails to simulate the illumination model perfectly, there is an ambient component

(Ia) which is a simple addition of light to compensate for this deficiency.

An expanded version of the illumination model can be written as

 3

www.manaraa.com

{ {
refracted

tt
reflected

rs
mi specular

n
ss

diffuse

iddatti

ambient

da IkIkVROkLNOkfSOkI
i λλλλλλ ++⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
•+•+= ∑

≤≤1

)()(
44 344 2144 344 21321

 (1.2)

where k is the coefficient for the object material that determines that portions

contribution to the lighting. O is the reflected color of the objects material.

Although we include the ambient light consistently with the other light

contributions, it isn’t important that it be modeled this way. This is because it isn’t

modeling any natural light interaction. is the attenuation factor which is related

to the distance of the intersection point from the light source. When the light is

farther away from the intersection point, less light reaches the intersection point and

eventually the eye. S

iattf

i is a binary function which has a value of 0 if the shadow ray

(the direct path from the intersection point to the light source) is occluded and 1 if it

is not. λ represents separate color channels.

1.4 Distributed Ray Tracing

Because it is unreasonable to assume that a single primary ray can model the light

represented in one pixel, approaches such as supersampling and ray distribution

have been introduced. Supersampling involves dividing pixels into regions and

sending/shooting rays through those sub pixel regions. This can help reduce

aliasing, but not eliminate it.

A more effective approach is stochastic sampling[Coo86]. This technique

eliminates aliasing by distributing the rays nonuniformly, similar to the method that

the human eye uses to avoid aliasing. Outside of the fovea where cones are less

prominent (and few samples are taken), the cones are distributed according to a

Poisson disk distribution. This means that the cones are distributed similarly to a

random distribution, except that there is a high probability that they are no closer

than a certain threshold. A similar effect can be achieved by jittering each ray in a

subpixel area.

 4

www.manaraa.com

Subpixel sampling need not apply only to primary rays. When reflection ray

samples are distributed, gloss (blurred reflection) can be achieved. By distributing

refracted rays, translucency is achieved. By distributing shadow rays, penumbras

are created. Distributed rays also can be used when simulating a camera lens to

produced depth of field. Finally, when rays are distributed in time, motion blur is

achieved.

 5

www.manaraa.com

Chapter 2: Acceleration
Techniques

2.1 Intersection Acceleration

Because each cast ray potentially tests for intersections with every object in the

scene, ray tracing can take an intolerably large amount of time to complete the

rendering task. Because ray-object intersection dominates the time required for

rendering ray traced images, most of the attempts to accelerate ray tracing has been

focused on reducing the time spent determining ray-object intersection. . By

reducing the number of ray-object intersection tests, generally available/used

techniques discussed later in this chapter reduce the ray-object intersection time

One approach that has been taken to reduce rendering times is the exploitation of

spatial coherence. Spatial coherence in a scene occurs because objects and groups

of objects are contained within a relatively small space when compared to the space

of the entire scene or the space traversed by rays. Because of this, rays that travel

through an area need to test for intersections only with objects that are located in

 6

www.manaraa.com

that area. Even when objects are not clustered together but are randomly distributed

throughout the scene, because the individual objects are contained in a relatively

small space compared to the entire scene, a small local path can limit the number of

object intersection calculations.

2.2 Bounding Box Hierarchy

Most spatial coherence techniques have attempted to accomplish their objective by

partitioning the scene and by associating objects with the partition in which the

object resides. One of the first techniques to be associated with ray tracing is the

bounding volume hierarchy[RW80]. The process involves adding objects to a

bounding volume hierarchy where the resulting surface area minimizes the

bounding volume’s surface area. Although some propose using bounding volumes

that are parallelepipeds oriented to minimize the surface area[RW80], it has become

common practice to use axis-aligned parallelepipeds[GS87]. When a ray traverses a

scene, it first tests the outermost bounding volume. Should there be an intersection,

objects (including other bounding volumes) found inside are then tested for

intersections. This is illustrated in figure 2.1. In optimal situations, applying this

technique can reduce the number of intersections tested for each ray from n to log n.

E

D A

 C

B

Figure 2.1 A bounding volume hierarchy. In this case, box A has
children B, C, and D. Box D has child E.

Goldsmith and Salmon introduce a technique for automatically creating the

bounding volume hierarchy[GS87]. Although the hierarchy created is suboptimal, it

is generated in time. Also, should objects be inserted into the hierarchy in a

random order, the result is a hierarchy that is near optimal. Any optimal,

nn log

 7

www.manaraa.com

automatically generated hierarchy takes at least time to generate. An optimal

grid requires comparisons of different hierarchy configuration based on a global

search whereas [GS87] performs a local evaluation. When an object is to be added

to the hierarchy, there are three possible options for inserting an objects at a

location: 1) create a new bounding volume which includes the object and the

bounding volume tested against as shown in figure 2.2a, 2) add the object as a child

of the bounding volume as shown in figure 2.2b, or 3) recursively test, inserting the

object into the children volumes of the bounding volume to determine which

surface area is increased the least.

2n

A B A B A B A B

Figure 2.2a A new box
is created to include

box A and B.

Figure 2.2b Box B becomes a
child of Box A. If necessary

box A’s bounds are extended.

2.3 Grid Traversal

While the hierarchical bounding box is extremely scene-dependent, other technique

attempt to partition scenes independent of the scene. One of these techniques is the

application of uniform grids. Although the grids can be dependent on the size of the

entire scene and number of objects in the scene, the actual division of the scene has

no dependence on the placement of the objects in the scene. The technique divides the

entire scene into grid areas, where traditionally the number of division in each

dimension is equal [FTI86; SB87; Dev89; JW89; CDP95]. In common practice, the

number of grids is set to equal the number of objects in the scene. This results in 3 n

divisions in each dimension where n is the number of objects in the scene.

The algorithm follows a ray path and traverses those grids through which the ray

passes, as seen in Figure 2.3. As the ray passes through a particular grid, the objects

that intersect that grid are tested for intersections. Should there be an intersection in

 8

www.manaraa.com

that grid, the closest intersection in that grid is found and is used as the ray

intersection point. Much of the speed-up results from the fact that when an

intersection is found in a voxel, subsequent grids are not traversed because none of

those grids can produce a closer intersection. A quick grid traversal algorithm comes

courtesy of the scan-line algorithm that is well known in computer graphics. The

technique is extended to a third dimension and is commonly known as the 3DDDA

algorithm[FTI86].

Figure 2.3 Grid Traversal. A ray represented by the arrow in this scene
enters two voxels without detecting any intersections. In the third

voxel entered, there is an intersection with an object (The crescent-
shaped object) found in the voxel, but the intersection lies outside of

the voxel. Therefore, the ray enters a fourth voxel and finds the
closest intersection that lies in the fourth voxel.

2.4 Hybrid Acceleration Techniques

Some techniques attempt to achieve a compromise between scene dependent

structures and scene independent structures. A straightforward technique that attempts

to achieve this compromise is the Jevans and Wyvill technique that introduces

subvoxel grids[JW89]. This technique begins by creating a grid of regular voxels in

the same way as uniform grids are generated. Once grids are generated, each voxel is

checked for overpopulation. Should a voxel be overpopulated, it is divided

recursively and replaced by a sub-grid.

 9

www.manaraa.com

A similar technique is the use of octrees[Gla84][Kap85]. Rather than dividing the

scene into grids with a varying number of partitions, the scene is divided using binary

partitions, which divides a region into eight octants. Like the subvoxel grids, it

recursively divides the octants until there are fewer objects in an octant than a

predefined threshold.

 Devillers[Dev89] proposes creating empty regions by creating maximized axis-

aligned areas void of any objects or containing very few objects. Initially a standard

uniform grid is constructed. Then macro-regions are found, consisting of sparsely

populated areas. When a ray traversing the grid encounters a macro-region, objects in

the region are tested. If no object intersected in the region, the ray continues out of the

region and into the grid position of the exit point of the macro-region. From this point

on, the ray continues traversing the grid in the normal fashion, thus simplifying

calculations in the simple (underpopulated) portions of the scene. Because macro-

regions may overlap, problems may arise when object edges do not lie along principal

axes. In such cases an overabundance of macro-regions is created to accommodate a

majority of areas with low density. An example is shown in Figure 2.4.

Figure 2.4 Because macro-regions may overlap, when an object or group
of objects occupies an area whose boundary is not close to being
axis-aligned, an excess of macro-regions may be created. In this

illustration, the object’s (or group of objects’) area is represented by
the shaded surface. Macro-regions are represented by rectangular

edges. To avoid confusion or ambiguity, one of the macro-regions is
shaded lightly.

 10

www.manaraa.com

Finally, Klimaszewski and Sederberg [KS97], apply two of the most common

acceleration techniques in grid traversal and bounding volume hierarchies to create

adaptive grids. The algorithm involves voxelizing bounding parallelepipeds that were

organized using the Goldsmith/Salmon algorithm[GS87]. Prior to inserting objects

into the bounding hierarchy, a thorough search organizes close objects into single

bounding boxes. Child bounding boxes are tested to remove any child boxes that

occupy a large percentage of the parent’s area. This facilitates adaptation to the non-

uniform organization of a scene while taking advantage of the simplicity of scene

subdivision. Because the research and results reported here are based heavily upon

this technique, the details of the algorithm are elaborated in chapter 5.

A similar algorithm developed independent of adaptive grids is introduced by Cazals

et al. [CDP95]. Like [KS97], they cluster objects in a scene and voxelize the cluster.

Large objects are not included in the clustering. Clusters then are inserted into the

grid in a recursive manner where smaller clusters are inserted into larger clusters that

completely surround them.

2.5 Intersection Reduction

As a result of object coherences, neighboring rays are likely to intersect similar

objects. Therefore, neighboring pixels in an image are likely to have identical or

similar intensities. This attribute has been described as image coherence, area

coherence, or pixel coherence. One of the simplest techniques taking advantage of

image coherence uses adaptive undersampling. An obvious disadvantage to

undersampling is the loss of information that falls in between samples. This happened

in images where skinny objects are lost from the image, or the ends of sharply pointed

objects fall between samples and are cut off.

The most basic recursive undersampling implementation is outlined in [AMS91]. In

this implementation, a sample is taken at a given interval in both x and y pixel

 11

www.manaraa.com

coordinates. Should the four neighboring pixels have similar colors, the intermediate

pixels are interpolated. Otherwise, either a finer sample is taken and the algorithm is

repeated recursively or all the intermediate pixels are calculated when the sample

interval is below a predefined threshold. An example is shown in figure 2.5.

Figure 2.5a An undersampling
example. The boxes represent
pixels. Pixels colored gray are

considered sampled pixels. In this
case there are 2 sample areas

shown.

Figure 2.5b One level of recursion. The
left area is found incoherent and finer
samples are taken. The right area is

found coherent and intermediate pixels
are interpolated (colored black).

[AMS91] further develops an undersampling technique by introducing error

checking to avoid the cutoff of sharp edges. Unfortunately the memory

requirements are high relative to any picture quality gains.

Klimazewski [Kli94] proposes a simpler version of this technique which eliminates

the recursion from the undersampling algorithm. Area sampling calculates pixel

colors at certain samples. When there is lack of coherence, all intermediate pixels

are calculated.

 12

www.manaraa.com

Chapter 3: Computer Generated
Animation

3.1 Traditional Animation

Many of the techniques used to produce computer animation derive from traditional

animation. Many of the steps required to produce such an animation carry over

unchanged. Although both use techniques such as storyboarding, soundtracking,

and modeling, those techniques are outside the scope of the research reported here.

For more information on traditional animation see [HM76].

3.2 Modeling and Positioning

A popular method of creating virtual models is to create surfaces using simple

geometric shapes. Limiting surface models to simple triangles can simulate

complex non-rigid surfaces effectively -- particularly when shading is included to

simulate non-flat surfaces. Because of its simplicity, ease of manipulation, and

 13

www.manaraa.com

rendering speed, complex surfaces often are tessellated into triangles or

quadrilaterals.

Once a simple model of an object or a portion of an object is available,

transformations are use to place the portion of the object in a location in the virtual

scene (or with respect to other portions of the object). These transformations are

effected by using scaling (S), rotation (R) and finally translations (T) which can

position objects arbitrarily in the scene. With the triangles or quadrilaterals being

represented by a series of points (P), a single transformation can be represented as

PTRSP ′= (3.1)

where P′ represents the points after the transform.

This can be expanded as follows:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′
′
′

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

•

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−++−−−

−−−++−

+−−−−+

•

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

111000
000
000
000

1000

0)1(cossin)cos1(sin)cos1(

0sin)cos1()1(cossin)cos1(

0sin)cos1(sin)cos1()1(cos

1000
100
010
001

22

22

22

z

y

x

z

y

x

z

y

x

zzxzyyxz

xzyyyzyx

yxzzyxxx

z

y

x

p
p
p

p
p
p

s
s

s

rrrrrrrr

rrrrrrrr

rrrrrrrr

t
t
t

θθθθθ

θθθθθ

θθθθθ

(3.2)

 14

www.manaraa.com

where t represents the translations, r represents the axis about which to rotate, θ

represents the rotation angle, s represents the scaling factor, p represents the initial

points, and p′ represents the transformed points.

Furthermore, a hierarchy of transformations of several levels can be used to place

simple polygons in the correct scene location. Commonly, one or more levels of

transformations place the polygon with respect to the object of which it is part.

Then further transformations place the object in relation to the entire scene.

3.3 Keyframing

Once a mechanism for placing objects in the scene is in place, a method of

describing movement in the scene over time is required. Similar to traditional

animation, a keyframing technique can be used by modelers to define objects at

certain intervals and to use other means of defining where the objects are at

intermediate times. To get intermediate positions, a calculated path is interpolated

between keyframe positions. Even though the term keyframe is used in computer

animation, unlike traditional animation the actual positioning at a certain time is

arbitrary and does not need to fall in line with the timing of the frames, nor do these

defined moments have to be consistent from object to object. They can be defined

independent of each object.

A variety of techniques can be used to interpolate intermediate positions, but a

common technique is to use cubic splines. Cubic splines offer a simple parametric

means of providing acceptable continuity between intermediate sections joined by a

keyframe moment while satisfying the variation diminishing property which can

plague polynomial interpolation.

Two major variations of cubic splines used for modeling and temporal positioning

have certain desirable properties discussed below.

 15

www.manaraa.com

The most popular spline is the Bézier[Bez72] curve. A cubic Bézier curve can be

defined by four control point. Two control points define the start and end points of

the curve. The other two control points are used to control the exiting and entering

tangents at those control points.

Figure 3.1 A Bézier curve. Points P0 and P3 are used in determining the
start and end points, respectively. Point P0 and P3 are used to

calculate the tangents at those endpoints.

The Bézier curve can maintain a degree of continuity by making sure that any

following curve segments use the reverse vector created by the end point and its

tangent to define the next control point of the following segment. This can be

controlled easily in any modeling environment beneath the user interface so the

modeler does not have to consider continuity when creating the curve.

The major benefits of using Bézier curves fall more on the computational side than

in the ease of use by modelers. The Bézier curve is subdivided easily and satisfies

the convex hull property.

The other major path defining spline used in modeling is the Catmull-Rom

spline[CR74] which originally is documented in [Over68]. Some modelers wish

simply to provide a set of points to be interpolated by the resulting path. Catmull-

Rom splines are an effective solution when the modeler is not concerned with such

things as tangents or derivatives, but only with moving an object from point “a” to

point “b” to point “c”.

 16

www.manaraa.com

Catmull-Rom splines pass through all of the control points. The tangent at which

the spline passes through a control point is determined by a vector created by the

previous and following control points. This requires an initial point and a final point

that lie outside the path. If the start point is positioned at the same place as the

initial control point, then the starting point tangent points from the starting point to

the next control point.

Figure 3.2 A Catmull-Rom Spline. Points P0 through P4 are interpolated
control points. Points P-1 and P5 are used to establish the initial and

ending tangents. Dotted lines are used to try to establish the
relationship of those initial and final tangents.

A variation of the Catmull-Rom spline allows for more control over the path of the

spline. The Kochanek-Bartels [KB84] splines are known also as TCB-splines since

they offer parameters for manipulating the tension, continuity, and bias at any

control point. All parameters range between -1 and 1. When all values for tension,

continuity, and bias are zero, the spline degenerates into a Catmull-Rom spline.

A tension value greater than zero tightens the rigidness with which the curve

follows the control points. With a value less than zero, the curve is loosened.

Continuity greater than zero relates the incoming tangent to the following control

point and the outgoing tangent to the preceding control point. Negative continuity

reverses the relationship relating the incoming with the preceding tangent and the

 17

www.manaraa.com

outgoing with the following tangent. The bias parameter maintains the continuity of

the outgoing and incoming tangents, but adjusts its weight more on the preceding or

following control point—positive continuity weights the preceding point more

heavily and a negative number the following point more heavily.

Although these parameters may give the modelers more functionality, they also

come with more risk. These parameters—particularly the tension and continuity—

can eliminate continuity at the control points.

3.4 Rotation Interpolation

Although translation and scaling are represented easily in Cartesian coordinates, as

is visible in equation 3.2 rotation cannot be presented easily. Complexities are

introduced when attempting to interpolate between defined rotations. Because

rotation is not a linear process, attempting to use a linear interpolation scheme

(Bézier curves can be described as a sequence of linear interpolations) to interpolate

rotation can result in non-fluid or unnatural movement.

This can be overcome by using quaternions[Ham53] to represent an arbitrary

rotation in three dimensions. Quaternions are hypercomplex numbers that have one

real part and three imaginary parts. Quaternions represent an extension of the two-

dimensional representation of rotation using complex numbers as seen in Figure

3.3.

 18

www.manaraa.com

Figure 3.3 2D rotation represented by complex numbers.

The necessity of four parts when extending rotations to three dimensions can been

seen by representing a quaternion on a unit sphere. Rather than using a point to

represent the placement on the two-dimensional sphere surface, a simple two-

dimensional object, such as an arrow or a compass spindle can be used as shown in

Figure 3.4. That spindle can take any orientation at a given point. This shows that

there is more than a unique rotation for a given point on the unit sphere. To keep the

spaces consistent, quaternions often are represented for rotation by points on a unit

hypersphere.

 19

www.manaraa.com

Figure 3.4 3D rotation represented by on a unit sphere.

Rotations can be converted easily from Cartesian coordinates to quaternions.

Rotation about vector [x y z]T by angle θ corresponds to

 kzjyix
2

sin
2

sin
2

sin
2

cos θθθθ
+++ (3.3)

where i, j, and k are the imaginary parts. Interpolation in quaternion space can be

done using a spherical linear interpolation (slerp)[Sho85]. This creates a straight

path from one point on the hypersphere to another. A slerp can be represented as:

()tqqqtqqSlerp 1
1

0010),,(−= (3.4)

Similar to how Bézier curves use linear interpolation in Cartesian space, slerps can

be used in quaternion space to effect a similar curve where the continuity is

established to produce smooth rotation interpolation.

 20

www.manaraa.com

3.5 Camera Positioning and Motion

Camera positioning can be treated much the same way that object positioning is

treated. Translation is used to position the camera point, and rotation is used to

orient the look-at and the up vectors. Scaling can be used theoretically to

manipulate the field of view, but we are aware of no such implementation.

 21

www.manaraa.com

Chapter 4: Adapting Adaptive Grids
and Undersampling to Animation

4.1 Bounding Movement

The most challenging task in this work has been the need to bound all movement.

Even though others have addressed temporal bounding, none have addressed it for

standard transformations are concerned.

Most of the reported work that addresses temporal bounding includes disclaimers

such as “One must be careful to insure that each bound completely encloses the

object for the entire time interval,”[Gla88] but none has presented a means of doing

so. Rather than address traditional animation positioning, the reported work uses a

technique friendly to bounding temporally. Even though temporal bounding of

traditional positioning techniques seems useful in dealing with such features such as

motion blur, any attempts to find a solution have been left unresolved.

 22

www.manaraa.com

Our first attempt at solving this problem uses Newton’s methods where, given the

derivatives for the paths, the zero crossing could be located using the iterative

method [SB02]. Unfortunately, the time taken to iterate through this process is so

large, that even allowing the process to finish is unreasonable.

Our next attempt at bounding movement over time involved a tradeoff between

bound tightness and quick bound generation. This process involved using interval

arithmetic to find a loose but quick bound on objects as they move over time. To

accomplish this, each part of the transformation was bounded and the intervals were

combined using interval multiplication. Multiplication then was used to combine all

the transformations. The more multiplications that take place, the more the bound

can loosen relative to the optimal bound. Bounding each portion of an object’s

movement involved separate techniques for bounding translation and scale and a

different technique for bounding rotation.

Because the control points for translation and scaling are stored in Cartesian

coordinate style (x, y, z), a simple bound of the curve that established the movement

over time will do. One way of realizing this simple bound involves establishing a

convex hull around the curve. For curves that satisfy the convex hull property, only

the control points are needed.

For cubic curves that do not satisfy the convex hull property, there is a simple way

to convert the curves to cubic Bézier curves. Equation 4.1 illustrates the equality

between a cubic Bézier curve and a Kochanek-Bartels spline.

kbkbbb PTMPTM = (4.1)

In this equation, T represents the time parameter vector defined in equation 4.2.

[]123 ttt (4.2)

The Bézier matrix Mb is represented in equation 4.3 as:

 23

www.manaraa.com

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−

0001
0033
0363
1331

 (4.3)

The Kochanek-Bartels spline Mkb is defined by equation 4.4 as:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−−
−−+−+−+−

+−+−−+−−

0010
0

232232
22

)0,0()1,0()0,0()1,0(

)0,1()1,1()0,1()0,0()1,1()1,0()0,0()1,0(

)0,1()1,1()0,1()0,0()1,1()1,0()0,0()1,0(

cccc
cccccccc

cccccccc

 (4.4)

where the c values represent the tension, continuity, and bias parameters associated

with the incoming and outgoing tangents at the starting and ending points. The first

subscript associates it with either the starting tangent (0) or the ending tangent (1)

and the second subscript, the difference (subtraction) between the current control

point, and the next (0) or previous (1) control-point. To be more specific, the

outgoing tangent at a starting point can be defined as: outT0 iP

() ()1)1,0(1)0,0(0 −+ −+−= iiiiout PPcPPcT (4.5)

And the incoming tangent at the ending point can be defined as: inT1 1+iP

() ()iiiiin PPcPPcT −+−= +++ 1)1,1(12)0,1(1 (4.6)

From this we can define c in terms of tension τ , continuity γ , and bias β as:

()()()
2

111
)0,0(

βγτ −−−
=c ()()()

2
111

)1,0(
βγτ ++−

=c (4.7a,b)

 24

www.manaraa.com

()()()
2

111
)0,1(

βγτ −+−
=c ()()()

2
111

)1,1(
βγτ +−−

=c (4.7c,d)

Having defined the necessary components for equation 4.1, the equation can be

rewritten to solve for the Bézier control points as:

 kbkbbb PMMP 1−= (4.8)

Where the inverse Bézier matrix is: 1−
bM

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

1111

1
3
2

3
10

1
3
100

1000

 (4.9)

Equation 4.8 reduces further to

kbb P
c

cc
c

c
cc

c
P

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

+

−
+−

=

0100
3
1

3
1

3
10

0
3
1

3
1

3
1

0010

)0,1(
)1,1()0,1(

)1,1(

)0,0(
)0,0()1,0(

)1,0(

 (4.10)

This can be solved logically by realizing that the starting points and the ending

points are control points (the first and fourth control points for Bézier curves and

the second and third control point for Kochanek-Bartels splines). The second and

third Bézier control points also are related to the tangents of the starting and end

points and can be expressed as:

()bbout PPT 010 3 −= (4.11)

 25

www.manaraa.com

()bbin PPT 321 3 −−= (4.12)

Solving for and and substituting the Bézier tangents with the Kochanek-

Bartels tangent definitions results in:

bP2 bP3

() ()[] kbkbkbkbkbb PPPcPPcP 101)1,0(12)0,0(1 3
1

+−+−= (4.13)

() ()[] kbkbkbkbkbb PPPcPPcP 212)1,1(23)0,1(2 3
1

+−+−−= (4.13)

which correspond to rows two and three of the matrix in equation 4.10.

Once splines are converted to cubic Bézier curves, control points can be used to

establish bounds on the curve. Because Bézier curves are easily subdivided, bounds

can be tightened further because the increase in control points more closely fit the

curve.

Rotation is more difficult. Because rotation interpolation is not established in

Cartesian coordinates, bounding its movement is not trivial. Keyframe interpolation

points often are mapped into quaternions space. Once they are mapped in

quaternion space, control points are calculated to establish the curve interpolation in

that space. Spherical Bézier (sbez) curves are established similar to their Cartesian

counterparts. They simply use a series of slerps to establish any point on the curve.

Some fundamental properties of quaternions are used to establish sbez control

points. (For more information, see [Eber00]). The derivative of a slerp (equation

3.4) can be written as

() ()1
1

01
1

0010 log),,(qqqqqtqqpsler t −−=′ (4.14)

This means that the tangent for spherical lines can be established at t=0 as:

 26

www.manaraa.com

()1
1

0010 log)0,,(qqqqqpsler −=′ (4.15)

Besides this, the incoming and outgoing tangents can be calculated for the

Kochanek-Bartels spline (our originally inputted keyframes).

 () ()1

1
0)0,0(2

1
1)1,0(0 loglog qqcqqcT kbkbkbout

−− += (4.15)

() ()2
1

1)0,1(3
1

2)1,1(1 loglog qqcqqcT kbkbkbin
−− += (4.16)

Along with this, Bézier control quaternions can be established knowing the tangents

are related to a Bézier in quaternion space.

()bbbout qqqT 1
1

000 log3 −= (4.17)

()bbbin qqqT 3
1

231 log3 −= (4.18)

The missing Bézier control quaternions can be calculated using the tangent

equations from both the Kochanek-Bartels base tangents and the spherical Bézier

tangents.

⎟
⎠
⎞

⎜
⎝
⎛= −

3
exp 01

001
out

bbb
Tqqq (4.19)

1
1

3
11

32 3
exp

−
−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛= b

in
bb qTqq (4.20)

Using the Bézier control quaternions will bound any movement to the inside of the

convex hull on the unit hypersphere. Unfortunately this bound does not create a

bound for the movement in Cartesian coordinates. Since we are not dealing with a

flat surface in the case of a hypersphere, an internal point may elevate above the

edge of the convex hull and hence has the potential of producing internal extrema as

 27

www.manaraa.com

demonstrated in figure 4.1. So although these Bézier control points are useful in

determining the bounds, further work remains to be done and is described below.

Figure 4.1 An example of how the convex hull of a Bézier on a sphere
may not represent all extrema.

A useful approach is to find extrema along the spherical line created between

control quaternions as shown if figure 4.2.

Figure 4.2 Square dots represent the extrema found along the convex

hull of a spherical Bézier curve. The two views represent the same
object viewed from different angles.

This can be calculated using the derivative of a slerp. A slerp may be represented in

terms of the angle θ between the two quaternions.

() ()()
θ

θθ
sin

sin1sin,, 10
10

tqtqtqqslerp +−
= (4.21)

 28

www.manaraa.com

Its derivative is given by

() ()()()
θ

θθθ
sin

1coscos,, 01
10

tqtqtqqpsler −−
=′ (4.22)

Equating the derivative to zero and solving for t gives us the extrema along the

slerps. We use the property

 bababa sinsincoscos)cos(+=− . (4.23)

Using equation (4.23) we find that

0sinsincoscoscos 001 =−− θθθθθ tqtqtq (4.24)

Then variable t is isolated on one side of the equation and equation 4.25 is obtained.

()
θ

θθ cotcsctan 1
1

0
1 −

=
−− qqt (4.25)

Once we have any extrema along the convex hull, we can use slerps recursively to

connect extrema found along the original slerps. This provides us with any internal

extrema as shown in figure 4.3.

 29

www.manaraa.com

Figure 4.3 Square dots represent the extrema found along the convex

hull of a spherical Bézier curve. The two lines through the convex
hull represent slerps traveling along an extremum.

Although not representable on a three-dimensional sphere, another level of

recursion may be necessary to find all internal extrema.

Once all potential extrema are located, control points and extrema are used to place

bounds on x, y, z and θ. These bounds then are used to establish bounds for the

rotation matrix found in equation 3.2. Note that cos θ and sin θ are bound by the

end points and at any intermediate crossing by 1 at cos 0, by -1 at cos π, by 1 at

sin ,
2
π and by -1 at sin .

2
3π

Now that the bounds for the individual translation, rotation, and scale matrices are

available, their bounds can be multiplied together using interval algebra. Once all

the transformation matrices are multiplied together, they are multiplied by the

bound of the initial object giving us a loose bound on the object as it moves over

time.

4.2 Exploiting Object Temporal Bounds

To exploit temporal coherence, the temporal bounds are treated initially as simple

objects in the scene and therefore can be placed in a hierarchy for ray traversal.

 30

www.manaraa.com

Once the hierarchy is established, rays are cast through the scene to establish any

possible intersection with the temporal bounds. A set of possible ray-object

intersections is kept for each ray. Should the number of possible ray-object

intersections exceed a predetermined threshold, the set is discarded and no further

temporal bound tests are performed. Once the sets have been established for each

ray, standard ray tracing is performed for each frame. For those rays that had sets

below the cardinality threshold, no hierarchy traversal is used on the primary ray. In

this case each object in the set is tested for the closest intersection. When a ray’s set

cardinality exceeds the threshold, a regular hierarchy traversal is used.

Because the initial temporal bounds has limits on the number of intersection tests

that it will perform, and should be a quick and easy means of finding initial

intersections, a simple voxel grid is used for placing objects in the scene, reducing

the amount of memory used and time necessary to generate the traversal structures.

In order to compute reflection, refraction, and shadow ray intersections, normal

hierarchy traversal is used.

To accommodate camera movement, and therefore ray movement, the camera is

considered static. Any camera transformation is performed inversely on the objects

in the scene. This simplifies the bound and intersections calculations. Of course,

any camera movement has a large negative impact on the frame-to-frame and inter-

frame pixel coherence of an animation.

Camera movement in virtual scenes may be more likely than in traditional filmed

scenes due to the absence of physical limitations associated with moving a physical

camera. However, diverging too much from tradition may counter the virtual

animation’s attempt to mimic reality. A leading producer of virtual animated films

has stated that virtual animators are careful to limit camera movement [BP03].

 31

www.manaraa.com

4.3 Extending Undersampling Temporally

Extending undersampling temporally is a simple task of extending the initial frame

sample interval on top of the initial inter-pixel sample interval. This treats the frame

dimension as three-dimensional so that pixels have neighbors in the x, y, and frame

directions. This means that pixels that fall in the x, y, and frame intervals are

sampled to look for any coherent regions and to eliminate the calculations necessary

for rendering those coherent regions.

In this case, area sampling proposed in [Kli94] offers a basis where colors are

calculated at x and y intervals and further extended to sample inter-frame at the

same interval as shown in Figure 4.4

Figure 4.4 Dark cubes represent sampled pixels. Light cubes represent

intermediate pixels.

y

x

Time/frame

Because region interpolation is now dependent on 8 sampled pixels instead of 4

being coherent, and if we assume a random pixel color, there is half the chance that

an area will be determined to be coherent. Fortunately, pixel color is not random but

is related closely to neighboring pixels in not only x and y, but also between frames.

When extending the undersampling technique, the ratio of sampled pixels to total

pixels is reduced from 4:(i+1)2 to 8:(i+1)3 where i is the interval of samples. Any

interval greater than one will have a reduced ratio that increases as i increases. Thus

when there is substantial three-dimensional pixel coherence, temporal

 32

www.manaraa.com

undersampling will interpolate more pixels than traditional two-dimensional

undersampling.

4.4 Combining Adaptive Grids with Undersampling

Although the temporal undersampling technique described in section 4.3 can be

combined with the technique described in section 4.2 for temporal adaptive grids,

there is a more complimentary technique that combines the concepts of

undersampling and temporal adaptive grids.

The temporal adaptive grid technique attempts to perform an initial scan for object

coherence which can simplify the final calculations in raytracing. One approach is

to take an initial sample where there is some interval between the x and y pixels.

Having calculated an initial sample, in regions of coherence, the sampled object is

used to determine the initial intersection. In regions where there is no such

coherence, standard raytracing techniques are used. This reduces the number of

initial temporal bound intersection calculations which in turn reduces the initial

calculations. It also reduces the number of object intersections that must be stored,

reducing the memory usage.

 33

www.manaraa.com

Chapter 5: Results

5.1 Specifications

All tests were performed on a Dell Dimension 8400 with an Intel Pentium® 4

Processor 640 with hyper-threading technology with a clock rate of 3.2 GHz. The

tests did not attempt to take advantage of the threading technology, utilizing only

one thread. The system included one gigabyte of RAM. The operating system used

was a Red Hat Fedora Core 3 Linux distribution with the 2.6.9 kernel. The code

was written in C++ but with limited use of C++ functionality. The code was

compiled with the 3.4.3 gnu compiler (gcc).

Table 5.1 lists test scenes and reports several of their properties.

 34

www.manaraa.com

Scene Number of

objects

Number of

frames

Resolution Camera

movement

Cubes Spheres: 512

Cones: 768

24 256 by 256 Translation for

initial

positioning

Common Polygons:11622 500 512 by 512 Translation,

rotation for

initial

positioning

Museum Polygons:10143

Cones:8

Animated

Triangles: 64

300 800 by 600 Translation and

scaling

Kitchen Triangles:110561 800 800 by 600 Translation and

rotation

Table 5.1 Test scenes and their properties.

The Cubes scene is an extension of the Akimoto Cube [AMS91] where one cube

was insufficient for this testing, so several cubes were grouped together and

animated. In this scene the camera is static, but the objects revolve around the

center of their mass. The Common scene has 3 familiar static objects—the Utah

teapot, a Beethoven bust, and a cow. While the objects are static, the camera is

translated across the scene and the animation takes place. The Museum and Kitchen

scenes are publicly available scenes from [LAM03].

We wrote the ray tracer from scatch, but used the AFF file format whose parser is

available at [LAM03]. We produced a common library of ray tracing techniques

and used this library to implement the different variations of speedup techniques

explored below. Bounding volumes and voxel grids were first explored, follow by

 35

www.manaraa.com

subvoxel grids. Building on top of these, adaptive grids were implemented and

extended to take advantage of temporal coherence. Finally, undersampling

techniques were explored.

5.2 Adaptive Grid Exploration
 After completing the basic raytracer, an attempt was made to replicate the work

reported in adaptive grids[KS97]. After some time and without success in

replicating the results, the original author was contacted. We successfully located an

implementation which captures his technique.

The implementation originally did not replicate the results because [GS87]

performs a greedy local search for an adequate place to insert objects into the

hierarchy. Although [KS97] attempted to emphasize the “minimum surface area”

insertion criteria, the search technique for the minimum surface area was not

distinguished. Because adaptive grids did not specify the search technique, it was

assumed that it used the logarithmic localized search found in [GS87]. The other

possibility would be to use the optimal n2 exhaustive search. Upon review of

adaptive grids source code and comparison of results, the exhaustive search

establishes a hierarchy that is traversed much more efficiently than by using the

localized logarithmic search, significantly reducing the computation time required

for a frame. With the merging process reducing the number of objects prior to the

hierarchy generation, the hierarchy generation computation differences are reduced.

Upon acquiring this information, the implementation results were consistent with

adaptive grids.

The merging process is an area of concern for adaptive grids. One of the

assumptions that drives adaptive grids is that objects are dispersed statistically

throughout the scene in such a way that objects merge quickly, reducing the number

of objects that must be searched as the merging process proceeds. Because the

merging process is (worst case) order n3, the potential for a merging bottleneck

 36

www.manaraa.com

increases. This may be the case particularly as scene complexity grows as the

number of objects is increased and the optimality of the object dispersion is

reduced. To speed up this process, a scene is sorted initially by voxelizing the

scene and then by merging objects local to each voxel. After some iterations of this

process, the merging process is performed on the entire scene. In the spirit of

[CDP95], the entire scene is checked initially for large objects. Should their surface

area be large enough with respect to the entire scene, the objects are inserted into

the root bounding box.

In response to concerns raised in [KWC97], we implemented both adaptive grids

and subvoxel grids [JW89]. A sub-voxel creation threshold of 12 was used for the

subvoxel grids. For all adaptive grids comparisons, no subvoxels were created. A

merging threshold of 2 was used, and a parent-child ratio of 0.1 was used for

merging with its parent. That same ratio was used to place large objects in the root

node.

Results are presented in table 5.2

 37

www.manaraa.com

Scene Subvoxel grid Adaptive grids

Cubes

Hierarchy building time

average

0 0

Hierarchy building time

standard deviation

0 0

Ray tracing time average 9.805833 seconds 10.71333333 seconds

Ray tracing time standard

deviation

0.111508 0.164413759

Maximum memory usage 4984 KB 4416 KB

Common

Hierarchy building time

average

0.006333 seconds 0.16422 seconds

Hierarchy building time

standard deviation

0.005028 0.005181

Ray tracing time average 16.03384 seconds 22.62176

Ray tracing time standard

deviation

2.402787

4.002093

Maximum memory usage 11364 11076

Table 5.2 Computation time and memory comparison of Subvoxel grids and Adaptive grids.

In these cases, both the subvoxel technique and the adaptive grids use an

insignificant amount of time generating their scene hierarchy. In these cases, the

subvoxel grids were faster, but that adaptive grids used less memory. These results

are consistent with results found in [HS99]

The subvoxels hierarchy generation technique has similar but opposite downfalls to

adaptive grids; should the scene have area of high object cluster, the time and

memory required to build the scene hierarchy is increased greatly. Adaptive grids

builds better grids when the objects are clustered closer together because objects are

 38

www.manaraa.com

merged into the same hierarchy. The merging time and grid traversal time are

increased when object are not close enough to merge. Subvoxel grids must

subdivide voxels until all voxels have fewer objects in them than the predefined

threshold. This can produce a large number of voxels, thus increasing the memory

usage and the grid traversal time. This information could be used beforehand in

determining which technique should be used.

5.3 Temporally Adaptive Grids

In order for temporal adaptive grids to be successful, the statistical layout of the

temporal scene must be similar to the layout of a standard scene. The surface area

of the object’s bounding box is particularly important because that determines the

likelihood of the bounding box being hit. Any large increase in the size of the

temporal bounding box compared to the bound box of a static object will increase

the false positives where the temporal bounding box is intersected by a ray but the

object is not intersected.

Table 5.3 compares the ratio of temporal bounding boxes of the object as it moves

through several frames to the bounding boxes corresponding to the object in a

single frame.

Scene Ratio of surface areas Standard Deviation

Cubes 0.648681 0.158358

Common 0.071445 0.128451

Museum 0.008721 0.029677

Kitchen 0.003976 0.027166

Table 5.3 Comparison of temporal bounding box surface area to their equivalent bounding
box for the object in a single frame.

The Cubes scene is the only scene where the camera is stationary. The Common

scene has a high ratio value (low surface area difference) compared to the Museum

 39

www.manaraa.com

and Kitchen scenes, because there is no camera rotation and the objects in the scene

are static. Unfortunately it is still a low ratio value when compared with a static

camera (as in the Cubes scene). The camera movement even without rotation

produces large temporal bounds significant enough to remove any suggestion of

tightness of bounds around the object and its movement. The Museum scene and

the Kitchen scene were built deliberately to limit the coherence it the scene, so their

bounding ratios were expected to be lower than an average scene. The worse the

bounding ratios, the less opportunity there is for speedup.

Table 5.4 compares rendering times and memory usage of temporally adaptive

grids. Temporally adaptive grids were tested with a frame interval of 4 and a ray

caching threshold of 30.

 40

www.manaraa.com

Sc
en

e
Te

m
po

ra
l

B
ou

nd
in

g

Ti
m

e

Te
m

po
ra

l

V
ox

el
iz

at
io

n

Ti
m

e

Te
m

po
ra

l

In
iti

al

in
te

rs
ec

tio
n

te
st

Po
si

tio
ni

ng

Ti
m

e

H
ie

ar
ch

y

ge
ne

ra
tio

n

tim
e

R
ay

tra
ci

ng

Ti
m

e

To
ta

l

Ti
m

e

C
ac

he
d

R
ay

s

Tr
ac

ed

R
ay

s

C
ub

es

a:
0.

05
83

s:
0.

00
75

0
a:

0.
48

83

s:
0.

04
30

a:
0.

01
04

s:
0.

00
20

4

0
a:

10
.2

92

s:
 0

.2
06

3

10
.4

39
a:

65
53

6

s:
0

0

C
om

m
on

a:

0.
05

86

s:
0.

00
61

a:
23

.3
05

s:
21

.4
27

a:
3.

03
66

s:
1.

69
56

a:
 0

.0
94

8

s:
 0

.0
94

8

a:
0.

32
00

s:
0.

01
03

a:
21

.8
56

s:
3.

44
23

28
.8

71
a:

 5
72

18

s:
 6

55
89

a:
15

54
74

s:
12

20
50

M
us

eu
m

a:

0.
05

05

s:
 0

.0
11

0

a:
0.

24
02

s:
0.

38
69

a:
3.

03
66

s:
1.

69
56

a:
0.

03
83

s:
 0

.0
07

7

a:
0.

17
28

s:
0.

03
50

a:
 8

7.
90

7

s:
 0

.8
30

8

88
.9

50
a:

13
77

26

s:
16

20
90

a:
34

22
73

s:
16

20
90

K
itc

he
n

a:
0.

94
20

9

s:
0.

13
69

4

a:
 3

56
.9

7

s:
 6

51
.5

5

a:
19

.3
23

s:
35

.9
42

a:
 0

.6
80

1

s:
 0

.0
80

83

a:
12

.5
73

s:
 6

.1
44

4

a:
86

5.
39

s:
63

3.
86

97
2.

95
a:

42
47

0.
75

s:
95

77
4.

14

a:
43

75
29

s:
95

77
4

41

T
ab

le
 5

.4
 T

im
e

ne
ed

ed
 to

 r
en

de
r

sc
en

es
 u

si
ng

 te
m

po
ra

lly
 a

da
pt

iv
e

gr
id

s.
a

re
pr

es
en

ts
 th

e
m

ea
n

w
hi

le
 s

is
 th

e
st

an
da

rd
 d

ev
ia

tio
n.

 T
he

T

ot
al

 T
im

e
is

 c
al

cu
la

te
d

by
 d

iv
id

in
g

th
e

T
em

po
ra

l r
el

at
in

g
ob

je
ct

s a
nd

 d
iv

id
in

g
th

em
 b

y
th

e
nu

m
be

r
of

 fr
am

es
 th

at
 th

ey
 a

pp
ly

 to
 (i

n
th

is

ca
se

 4
) a

nd
 a

dd
in

g
th

em
 to

 th
e

ot
he

r
tim

es
 to

 c
al

cu
la

te
 a

 fr
am

e.

www.manaraa.com

Scene Temporal Adaptive grids Adaptive grids

Cubes

Ray tracing time average 10.292 seconds 10.713 seconds

Total time 10.439 seconds 10.713 seconds

Common

Ray tracing time average 21.856 seconds 22.621 seconds

Total time 28.871 seconds 22.791 seconds

Museum

Ray tracing time average 87.907 seconds 85.242 seconds

Total time 88.950 seconds 85.37 seconds

Kitchen

Ray tracing time average 865.39 seconds 656.79 seconds

Total time 972.95 seconds 660.52 seconds

Table 5.5 Comparison of temporal adaptive grids and adaptive grids rendering times.

Even with the poor bounds, the rendering times are similar to the adaptive grids

times, with minor improvements in the general ray tracing time on some scenes as

shown in table 5.5. Because a larger bound intersects more voxels, more time is

needed to insert the objects in the voxels. Should these initial temporal bounding

boxes be improved, there is potential for more time improvement in 1) hierarchy

generation time because the initial boxes intersect few voxels, 2) the initial temporal

tracing time because there are fewer intersection tests in each voxel traversed and 3)

The final rays traced because there should be fewer ray traversals when fewer false

positive temporal box intersections push the count above the threshold for grid

traversal.

The poor temporal bounds also create memory issues. The more voxels that a

bounding box intersects, the more memory is required to store pointers to the object

 42

www.manaraa.com

represented by the bounding box. Figure 5.6 show memory usage in temporally

adaptive grids and adaptive grids. While adaptive grids memory was relatively

constant, temporally adaptive grids usage varied.

Maximum memory usage Temporally adaptive

Grids

Adaptive grids

Cubes 6332KB 4416KB

Common 131MB 11 MB

Museum 92MB 18 MB

Kitchen 2683MB 103MB

Table 5.6 Memory comparison of adaptive grids and temporally adaptive grids.

It should be noted that the Kitchen scene’s memory use exceeded the physical

memory available (1024 MB) and also came close to filling the virtual memory

available. Although the CPU time was used in all our timing, this appears to have

an effect on the timing result of the Kitchen scene in Table 5.4. This explains why

other scene times were similar to adaptive grid but the Kitchen scene is noticeably

higher.

5.4 Undersampling

The second area explored is the use of undersampling in ray tracing. First a

comparison of intra-frame to inter-frame sampling is explored. Finally an extension

of temporally adaptive grids is explored. For these experiments, a sample interval of

4 is used. The error is calculated similarly to [Klim94] and [AMS91]. The error

threshold was set to 3 which is equivalent to 1 for each color channel.

Table 5.7 compares two-dimensional sampling with the three-dimensional

sampling.

 43

www.manaraa.com

Scene Two-

dimensional

rendering time

(average)

Two-

dimensional

interpolated

pixels

(average)

Two-

dimensional

memory usage

Three-

dimensional

rendering time

(average)

Three-

dimensional

interpolated

pixels

(average)

Three-

dimensional

memory usage

Cubes 9.1320 35644 5252KB 8.9800 30293 7012KB

Common 13.680 196245 11284KB 17.720 145404 48968KB

Museum 33.051 338247 18880KB 72.310 376358 31156KB

Table 5.7 A comparison of two-dimensional sampling and three-dimensional sampling where
the average rendering time per frame in seconds and average number of interpolated pixels
per frame are shown along with the maximum memory usage.

Sampling in three dimensions sometimes produces more interpolated pixels than in

two-dimensional sampling. However, the reverse is also true. Although the museum

scene had more pixels interpolated on average, the closing frames had a large drop

in the number of pixels interpolated. This also produced poor rendering times

where some of the final frames where close to three times as slow as previous

frames. So although the average number of interpolated pixels is higher than the

two-dimensional sample, its times are close to standard adaptive grids because of

the slowdown of these last few frames.

There is a correlation between the camera movement and the speedups attained.

Interpolation Error Two-dimensional

sampling

Three-dimensional

sampling

Cubes 0.043938 0.0068721

Common 0.076328 0.065085

Museum 0.21104 0.42786

Table 5.8 A comparison of two-dimensional sampling error and three-dimensional sampling
error where it is the average difference in a color channel value that can vary between 0 and
255.

The three-dimensional sampling has as good as if not better error rates than its two

 44

www.manaraa.com

-dimensional equivalent as seen in table 5.8. Both have acceptable error rates as

neither differs on average more that one pixel channel intensity which generally is

indiscernible to the human eye.

Finally table 5.9 shows the results from rendering done with temporally adaptive

grids with temporal undersampling.

Scene Rendering

Time

Number of

Rays

Interpolated

4D intial

intersect time

Cubes 9.740 33006.22 0.02

Common 32.45 0 0.13

Museum 105.04 16255.4 0.95

Table 5. 9 Results of temporally adaptive grids with temporal undersampling.

The temporally adaptive grids with temporal undersampling have a quicker initial

intersection test than temporally adaptive grids because fewer tests are performed.

However, fewer temporally coherent regions are found. The Common scene found

no coherent regions. The Museum scene also has large sections of frames where no

coherent regions are found. This means no speedups of the kinds that are associated

with standard temporally adaptive grids. Due to the large lack of coherence in the

temporal samples, fewer rays where cached to skip traversal. This meant that little

or no speedup was achieved and further time costs were incurred creating the

hierarchies and initial traversal.

5.5 Conclusion

We have designed and implemented a bounding technique that quickly produces

bounds around object hierarchies as they are transformed over time. While the

bounds are not optimal, our work represents an important step toward producing

near optimal temporal bounds.

 45

www.manaraa.com

Even with the poor bounds, we were able to produce speedups on the order of 4%

by taking advantage of temporal coherence in cases when camera movement is

limited; improvements are greatest when there is minimal camera movement in the

animation.

Should the efficiency of the temporal bounds be improved, we anticipate that these

speedups will improve further.

Undersampling can also be effective in reducing rendering times when sampling

inter-frame without increasing the interpolated pixel value error. This is especially

true when object and camera movement is minimized.

Generally, camera movement greatly reduces the temporal coherence in a scene. It

was our original intent to produce techniques that allow for camera movement so as

to not limit the application of the techniques. We have concluded that scenes with

camera movement lack the temporal coherence sufficient to warrant their inclusion

since little improvement is possible using these techniques. However, absent of

camera movement, techniques that exploit temporal coherence can reduce the

rendering time of animations. Knowing beforehand the extent of movement of

objects and cameras facilitates a priori determination of the relative appropriateness

of temporal acceleration techniques vs. standard acceleration techniques.

5.6 Future Work

The majority of future work will involve improvements to the bounding of object

movement. While Newton’s method is too slow and interval algebra is

insufficiently accurate, a combination offers potential. Guidance may be offered by

[Nor05] where interval algebra is used as introduced in this work, but is extended to

add checks to prevent error from increasing unacceptably. Additionally, more

calculations done prior to establishing the interval may reduce the opportunity for

error.

 46

www.manaraa.com

Because transformation of the camera and objects in the scene is directly related to

temporal coherence, establishing a transformation metric may be beneficial in

deciding if it is appropriate to use a method that takes advantage of temporal

coherence. Prior to a scene being rendered, the transformation metric could be

calculated and if below a certain threshold, then the temporal coherence is

exploited. Scene that do not show sufficient promise relative to the metric could be

rendered with standard techniques.

Another approach not implemented in this work would bound ray movement in the

scene and perform a temporal ray bound-object bound intersection to establish

initial temporal intersections. Because temporal adaptive grids require a ray to be

static, when there is camera movement each object is moved inversely to the

camera movement to simulate the camera movement. This increase the number of

transformations performed on each object. If the camera is free to move and the

rays are not static, a bound could be placed on the ray and intersected with the

scene. This would reduce the transformations on the objects, and most likely would

improve the object hierarchy. Unfortunately it is less elegant to implement. Further,

the ray movement has the potential to create a very large bound.

It is unknown if optimally temporally bounded objects have the statistically

beneficial properties for object hierarchy generation that regular scenes have. A

study of the scene properties of objects as they move may be beneficial.

 47

www.manaraa.com

Appendix – Sample Frames from
Animations.

Cube frame 0

Cube frame 5

 48

www.manaraa.com

Cube frame 10

Cube frame 20

Cube frame 15

Cube frame 23

 49

www.manaraa.com

Common frame 0 Common frame 100

Common frame 200 Common frame 300

Common frame 400 Common frame 499

 50

www.manaraa.com

Museum frame 0

Museum frame 50

 51

www.manaraa.com

Museum frame 100

Museum frame 150

 52

www.manaraa.com

Museum frame 200

Museum frame 250

 53

www.manaraa.com

Kitchen frame 0

Kitchen frame 100

 54

www.manaraa.com

Kitchen frame 200

Kitchen frame 300

 55

www.manaraa.com

Kitchen frame 400

Kitchen frame 500

 56

www.manaraa.com

Kitchen frame 600

Kitchen frame 700

 57

www.manaraa.com

Kitchen frame 799

 58

www.manaraa.com

[AMS91] Taka-aki Akimoto, Kenji Mase, and Yasuhito Sueanga, “Pixel-Selected Ray Tracing,” IEEE

Computer Graphics and Applications, 21(40):14-22, July 1991. Similar paper found in
Eurographics ’89, pages 39-50, including author Akihiko Hashimoto.

[Bez72] Bézier, Pierre, “Numerical Control – Mathematics and Applications,” Wiley, London,

England, 1972.
 [BP03] Buena Vista Home Entertainment and Pixar Animation Studios, “Finding Nemo (Collector's

Edition)” Filmmakers’ Visual Commentary Including Deleted Scenes And Recording
Session, Chapter38 (minutes 54-56), November, 2003.

[CDP95] Cazals, Frederic, George Drettakis, and Claude Puench, “Filtering, Clustering and Hierarchy

Construction: a New Solution for Ray-Tracing Complex Scenes,” EUROGRAPHICS ’95,
pages 371-382, 1995.

[Coo86] Cook, Robert L., “Stochastic Sampling in Computer Graphics,” ACM Transactions on
Graphics, 5(1):51-72, January 1986.

[CR74] Catmull, Edwin and Raphael Rom, “A Class of Local Interpolating Splines,” Computer
Aided Geometric Design; edited by Barnhill, Robert E. and Riesenfeld, Richard F., Academic
Press; New York, pages 317 – 326, 1974.

[Dev89] Devillers, Olivier, “The Macro-regions: an efficient space subdivision structure for Ray-
tracing", EUROGRAPHICS ’89, pages 27-38, 1989.

[Eber00] Eberly, David, “3D Game Engine Design,” Morgan Kaufmann, September 2000.
[FTI86] Fujimoto, Akira, Takayuki Tanaka, and Kansei Iwata, “ARTS: Accelerated Ray-Tracing

System,” IEEE Computer Graphics and Applications, 6(4):16-26, April 1986.
[Fuj88] Fujimoto, Akira, “Turbo Beam Tracing - A Physically Accurate Lighting Simulation

Environment,” Knowledge Based Image Computing Systems, May, 1988.
[Gla84] Glassner, Andrew S., “Space Subdivision for Fast Ray Tracing,” IEEE Computer Graphics

and Applications, 4(10):15-22, October 1984.
[Gla88] Glassner, Andrew S., “Spacetime Ray Tracing for Animation,” IEEE Computer Graphics and

Applications, 8(2):60-70, March 1988.

[GS87] Goldsmith, Jeffrey, and John Salmon, “Automatic Creation of Object Hierarchies for Ray

Tracing,” IEEE Computer Graphics and Applications, 7(5):14-20, May 1987.
[GWS04] Guenther, Johannes, Ingo Wald, and Philipp Slusallek, “Realtime Caustics using Distributed

Photon Mapping,” Rendering Techniques 2004, Eurographics Symposium on Rendering, June
21-23, 2004.

[Ham53] Hamilton, William Rowan, “Lectures on Quaternions: Containing a Systematic Statement of a
New Mathematical Method,” Dublin: Hodges and Smith, 1853.

[HM76] Halas, John and Roger Manvell., “The Technique of Film Animation,” Focal Press, 1976.

[HS99] Havran, Vlastimil and Filip Sixta, “Comparison of Hierarchical Grids,”

http://www.acm.org/tog/resources/RTNews/html/rtnv12n1.html, Ray Tracing News, 12(1),
June 25, 1999.

[JW89] Jevans, David, and Brian Wyvill, “Adaptive Voxel Subdivision for Ray Tracing,”

Proceedings of Graphics Interface ’89, pages 164-172, 1989.

 59

http://www.acm.org/tog/resources/RTNews/html/rtnv12n1.html

www.manaraa.com

[Kaj86] Kajia, James T., “The Rendering Equation,” Proceedings of SIGGRAPH ’86, Computer
Graphics, 20(4):143-150, August 1986.

[Kap85] Kaplan, Michael R., “Space Tracing a Constant Time Ray Tracer: State of the Art in Image

Synthesis,” SIGGRAPH ’85 Course Notes, 18(3):149-158, July 1985.
[KB84] Kochanek, Doris H. U. and Richard H. Bartels, “Interpolating splines with local tension ,

continuity and bias control,” Computer Graphics, 18(3):33–41, July 1984.

[Kli94] Klimaszewski, Krzysztof, S., “Faster Ray Tracing Using Adaptive Grids and Area Sampling,”

doctoral dissertation, Brigham Young University, Provo, Utah, Dept. of Civil and
Environmental Engineering, 1994.

[KS97] Klimaszewski, Krzysztof, S. and Thomas W. Sederberg, “Faster Ray Tracing Using Adaptive

Grids,” IEEE Computer Graphics and Applications, 17(1):42-51, January 1997.

[KWC97] Klimaszewski, Krzysztof, S., Andrew Woo, Frederic Cazals and Eric Haines, “Additional

Notes on Nested Grids,” http://www.acm.org/tog/resources/RTNews/html/rtnv10n3.html, Ray
Tracing News, 10(3), December 2, 1997.

[LAM03] Lext, Jonas, Ulf Assarsson, and Tomas Möller, “BART: A Benchmark for Animated Ray

Tracing.” http://www.ce.chalmers.se/BART/, Department of Computer Engineering,
Chalmers University of Technology, Sweden. accessed Apr 1 2005, last updated June 2, 2003

[Nor05] North, Nicholas, “A Robust Algorithm for Curve/Surface Intersection,” 19th Annual Spring
Research Conference 2005, College of Physical and Mathematical Sciences, Brigham Young
University, CS5(c), March 19, 2005.

[Ove68] Overhauser, Albert W., “Analytic Definition of Curves and Surfaces by Parabolic Blending,”

Technical Report No. SL68-40, Ford Motor Company Scientific Laboratory, May 8. 1968
[Pho75] Phong, Bui-Tuong, “Illumination for Computer Generated Pictures,” Communications of the

ACM, 18(6):311-317, June 1975.
[RW80] Rubin, Steven M., and Turner Whitted, “A 3-Dimensional Representation for Fast Rendering

of Complex Scenes,” Proceedings of SIGGRAPH ’80, Computer Graphics, 14(3):110-116,
July 1980.

[SB02] Stoer, Josef and R. Bulirsch, “Introduction to Numerical Analysis,” Springer-Verlag, 2002.

[Sho85] Shoemake, Ken, “Animating Rotation with Quaternion Curves,” Proceedings of SIGGRAPH

’85, Computer Graphics, 19(3):245-254, July 1985.

[War69] Warnock, John E., “A Hidden-Surface Algorithm for Computer-Generated Half-Tone

Pictures,” Technical Report TR 4-15, NTIS AD-733 671, Computer Science Department,
University of Utah, Salt Lake City, June 1969.

[Whi80] Whitted, Turner, “An Improved Illumination Model for Shaded Display,” Communications of

the ACM, 23(6):343-349, June 1980.

 60

http://www.acm.org/tog/resources/RTNews/html/rtnv10n3.html
http://www.ce.chalmers.se/old/BART/

	Accelerated Ray Traced Animations Exploiting Temporal Coherence
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Content
	 List of Tables
	 List of Figures
	 Chapter 1: Ray Tracing
	1.1. Introduction
	1.2 Tracing Rays
	1.3 Illumination Model
	1.4 Distributed Ray Tracing

	 Chapter 2: Acceleration Techniques
	2.1 Intersection Acceleration
	2.2 Bounding Box Hierarchy
	2.3 Grid Traversal
	2.4 Hybrid Acceleration Techniques
	2.5 Intersection Reduction

	 Chapter 3: Computer Generated Animation
	3.1 Traditional Animation
	3.2 Modeling and Positioning
	3.3 Keyframing
	3.4 Rotation Interpolation
	 3.5 Camera Positioning and Motion

	Chapter 4: Adapting Adaptive Grids and Undersampling to Animation
	4.1 Bounding Movement
	4.2 Exploiting Object Temporal Bounds
	4.3 Extending Undersampling Temporally
	4.4 Combining Adaptive Grids with Undersampling

	Chapter 5: Results
	5.1 Specifications
	5.2 Adaptive Grid Exploration
	5.3 Temporally Adaptive Grids
	5.4 Undersampling
	5.5 Conclusion
	5.6 Future Work

	Appendix – Sample Frames from Animations.

