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ABSTRACT 
 
 
 

 ACCELERATED RAY TRACED ANIMATIONS EXPLOITING 

TEMPORAL COHERENCE 

 
 
 

Darwin T. Baines 

Department of Computer Science 

Master of Science 

 
 
 

Ray tracing is a well-know technique for producing realistic graphics. 

However, the time necessary to generate images is unacceptably long. When 

producing the many frames that are necessary for animations, the time is magnified. 

Many methods have been proposed to reduce the calculations necessary in ray 

tracing. Much of the effort has attempted to reduce the number of rays cast or to 

reduce the number of intersection calculations. Both of these techniques exploit 

spatial coherence. These acceleration techniques are expanded not only to exploit 

spatial coherence but also to exploit temporal coherence in order to reduce 

calculations by treating animation information as a whole as opposed to isolating 

calculations to each individual frame. Techniques for exploiting temporal coherence 

are explored along with associated temporal bounding methods. By first ray tracing a 

 



www.manaraa.com

 

temporally expanded scene, we are able to avoid traversal calculations in associated 

frames where object intersection is limited.  This reduces the rendering times of the 

associated frames.
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Chapter 1: Ray Tracing 
 

1.1. Introduction 
 
Ray tracing [Whi80] is a technique for producing images of virtual scenes that 

contain complex light interaction such as reflection and refraction. Unfortunately 

the time needed to render these images is substantial. Because the intersection of 

each ray with each object in the scene must be calculated, calculations times can be 

very high for complex scenes. This is amplified further by intersection calculations 

for secondary rays. 

 

Rendering animations adds further to the complexity of performing these 

calculations.  An animation is the assembly of static images that, when viewed 

sequentially, produces a coherent image that appears to be dynamic. 

 

Several approaches have been taken to reduce rendering times in ray tracing. This 

work investigates means of exploiting temporal coherence to reduce further the 

rendering times of individual animation frames. 
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1.2 Tracing Rays 
 

One of the primary focuses of computer graphics is the production of photo-realistic 

images. Photorealism usually is achieved by creating a scene and by simulating the 

interaction of light and objects in the scene. Ideally, any simulation will model the 

transport intensity of light from each point in the scene to all others points in the 

scene. This is expressed in the rendering equation[Kaj86]. Unfortunately, with 

current processing limitation, simulating even simple scenes in this manner is 

impractical. Therefore, rather than attempt to simulate a scene perfectly, computer 

graphics techniques often concentrate on certain aspects of lighting simulation that 

are relatively important to creating a realistic looking scene. This is true for ray 

tracing. Although ray tracing is able to model phenomena such as shadows, 

refraction, specular reflection, and diffuse and specular illumination[Whi80], it 

does not include light interactions such as diffuse reflection, diffraction, diffuse 

transmission (e.g. a lampshade that spreads the light), or indirect specular reflection 

or refraction (e.g. a mirror reflecting light onto another object, or a magnifying 

glass focusing light).  Traditional ray tracing has been extended to address these 

light interactions using non-traditional ray tracing techniques [Fuj88][GWS04].  

 

 

As its name suggests, ray tracing follows the path of light rays as they travel in a 

virtual scene. Rather than following rays from the light to the eye, a reverse path 

follows the ray from the eye to the light source. This reduces the number of rays 

that are calculated by excluding all rays that do not intersect the viewplane. Rays 

that initially emanate from the eye and pass through the viewplane are called 

primary rays or eye rays. These rays are tested against the objects in the scene to see 

if there is any intersection with them and, if so, which intersection is the closest. 

Lighting of the object then is calculated for the intersection point. Secondary rays 

also are sent out for the purpose of including such things as shadows, reflection, and 

refraction in the lighting calculations. This process continues recursively until a 

depth tolerance is reached, no intersection is found, or a ray intersects an object that 

is neither reflective nor refractive. An example of this is presented in Figure 1.1. 

 2
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From this a ray tree can be created where any path can be followed from the eye to 

its final intersection point, as shown in Figure 1.2. 

 
 

 

Figure 1.1 Ray path through a scene.                      Figure 1.2 Ray tree. 
 
 

1.3 Illumination Model 
 
As discussed in the previous section, the lighting of a pixel is based on the ray that 

originates at the eye, passes through that pixel, and strikes the closest object along 

that ray’s path. From that intersection, lighting can be calculated based on diffuse 

and specular attributes of the object, and also from recursive calls to reflected and 

refracted rays. The lighting equation can be written as 

 

trsda IIIIII ++++=        (1.1) 
 

where I is the intensity of the pixel, Id is the intensity of the diffuse component, Is is 

the intensity of the specular component, Ir is the contribution of reflection, and It is 

the contribution of transmission or refraction. Because the ray tracing algorithm 

fails to simulate the illumination model perfectly, there is an ambient component 

(Ia) which is a simple addition of light to compensate for this deficiency. 

 

An expanded version of the illumination model can be written as 
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where k is the coefficient for the object material that determines that portions 

contribution to the lighting. O is the reflected color of the objects material. 

Although we include the ambient light consistently with the other light 

contributions, it isn’t important that it be modeled this way. This is because it isn’t 

modeling any natural light interaction. is the attenuation factor which is related 

to the distance of the intersection point from the light source. When the light is 

farther away from the intersection point, less light reaches the intersection point and 

eventually the eye. S

iattf

i is a binary function which has a value of 0 if the shadow ray 

(the direct path from the intersection point to the light source) is occluded and 1 if it 

is not. λ represents separate color channels. 

 

 

1.4 Distributed Ray Tracing 
 

Because it is unreasonable to assume that a single primary ray can model the light 

represented in one pixel, approaches such as supersampling and ray distribution 

have been introduced. Supersampling involves dividing pixels into regions and 

sending/shooting rays through those sub pixel regions. This can help reduce 

aliasing, but not eliminate it.  

 

A more effective approach is stochastic sampling[Coo86]. This technique 

eliminates aliasing by distributing the rays nonuniformly, similar to the method that 

the human eye uses to avoid aliasing. Outside of the fovea where cones are less 

prominent (and few samples are taken), the cones are distributed according to a 

Poisson disk distribution. This means that the cones are distributed similarly to a 

random distribution, except that there is a high probability that they are no closer 

than a certain threshold. A similar effect can be achieved by jittering each ray in a 

subpixel area. 

 4
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Subpixel sampling need not apply only to primary rays. When reflection ray 

samples are distributed, gloss (blurred reflection) can be achieved. By distributing 

refracted rays, translucency is achieved. By distributing shadow rays, penumbras 

are created. Distributed rays also can be used when simulating a camera lens to 

produced depth of field. Finally, when rays are distributed in time, motion blur is 

achieved.  
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Chapter 2: Acceleration 
Techniques 
 

2.1 Intersection Acceleration 
 
Because each cast ray potentially tests for intersections with every object in the 

scene, ray tracing can take an intolerably large amount of time to complete the 

rendering task. Because ray-object intersection dominates the time required for 

rendering ray traced images, most of the attempts to accelerate ray tracing has been 

focused on reducing the time spent determining ray-object intersection. . By 

reducing the number of ray-object intersection tests, generally available/used 

techniques discussed later in this chapter reduce the ray-object intersection time  

 

One approach that has been taken to reduce rendering times is the exploitation of 

spatial coherence. Spatial coherence in a scene occurs because objects and groups 

of objects are contained within a relatively small space when compared to the space 

of the entire scene or the space traversed by rays. Because of this, rays that travel 

through an area need to test for intersections only with objects that are located in 

 6
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that area. Even when objects are not clustered together but are randomly distributed 

throughout the scene, because the individual objects are contained in a relatively 

small space compared to the entire scene, a small local path can limit the number of 

object intersection calculations. 

 

2.2 Bounding Box Hierarchy  
 
Most spatial coherence techniques have attempted to accomplish their objective by 

partitioning the scene and by associating objects with the partition in which the 

object resides. One of the first techniques to be associated with ray tracing is the 

bounding volume hierarchy[RW80].   The process involves adding objects to a 

bounding volume hierarchy where the resulting surface area minimizes the 

bounding volume’s surface area.  Although some propose using bounding volumes 

that are parallelepipeds oriented to minimize the surface area[RW80], it has become 

common practice to use axis-aligned parallelepipeds[GS87]. When a ray traverses a 

scene, it first tests the outermost bounding volume. Should there be an intersection, 

objects (including other bounding volumes) found inside are then tested for 

intersections. This is illustrated in figure 2.1. In optimal situations, applying this 

technique can reduce the number of intersections tested for each ray from n to log n. 

 

E

D  A 

 C 

B 

 

 

 

 

 

Figure 2.1 A bounding volume hierarchy. In this case, box A has 
children B, C, and D. Box D has child E. 

  

Goldsmith and Salmon introduce a technique for automatically creating the 

bounding volume hierarchy[GS87]. Although the hierarchy created is suboptimal, it 

is generated in  time. Also, should objects be inserted into the hierarchy in a 

random order, the result is a hierarchy that is near optimal. Any optimal, 

nn log
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automatically generated hierarchy takes at least  time to generate. An optimal 

grid requires comparisons of different hierarchy configuration based on a global 

search whereas [GS87] performs a local evaluation. When an object is to be added 

to the hierarchy, there are three possible options for inserting an objects at a 

location: 1) create a new bounding volume which includes the object and the 

bounding volume tested against as shown in figure 2.2a, 2) add the object as a child 

of the bounding volume as shown in figure 2.2b, or 3) recursively test, inserting the 

object into the children volumes of the bounding volume to determine which 

surface area is increased the least. 

2n

 

 

 
 
 
 
 

A B A B A B A B 

Figure 2.2a A new box 
is created to include 

box A and B. 

Figure 2.2b Box B becomes a 
child of Box A. If necessary 

box A’s bounds are extended.
 

2.3 Grid Traversal 
 
While the hierarchical bounding box is extremely scene-dependent, other technique 

attempt to partition scenes independent of the scene. One of these techniques is the 

application of uniform grids. Although the grids can be dependent on the size of the 

entire scene and number of objects in the scene, the actual division of the scene has 

no dependence on the placement of the objects in the scene. The technique divides the 

entire scene into grid areas, where traditionally the number of division in each 

dimension is equal [FTI86; SB87; Dev89; JW89; CDP95]. In common practice, the 

number of grids is set to equal the number of objects in the scene. This results in 3 n  

divisions in each dimension where n is the number of objects in the scene. 

 

The algorithm follows a ray path and traverses those grids through which the ray 

passes, as seen in Figure 2.3. As the ray passes through a particular grid, the objects 

that intersect that grid are tested for intersections. Should there be an intersection in 
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that grid, the closest intersection in that grid is found and is used as the ray 

intersection point. Much of the speed-up results from the fact that when an 

intersection is found in a voxel, subsequent grids are not traversed because none of 

those grids can produce a closer intersection. A quick grid traversal algorithm comes 

courtesy of the scan-line algorithm that is well known in computer graphics. The 

technique is extended to a third dimension and is commonly known as the 3DDDA 

algorithm[FTI86].   

 

 

 

 

 

 

 

 

Figure 2.3 Grid Traversal. A ray represented by the arrow in this scene 
enters two voxels without detecting any intersections. In the third 

voxel entered, there is an intersection with an object (The crescent-
shaped object) found in the voxel, but the intersection lies outside of 

the voxel. Therefore, the ray enters a fourth voxel and finds the 
closest intersection that lies in the fourth voxel.  

 

2.4 Hybrid Acceleration Techniques 
 
Some techniques attempt to achieve a compromise between scene dependent 

structures and scene independent structures. A straightforward technique that attempts 

to achieve this compromise is the Jevans and Wyvill technique that introduces 

subvoxel grids[JW89]. This technique begins by creating a grid of regular voxels in 

the same way as uniform grids are generated. Once grids are generated, each voxel is 

checked for overpopulation. Should a voxel be overpopulated, it is divided 

recursively and replaced by a sub-grid. 
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A similar technique is the use of octrees[Gla84][Kap85].  Rather than dividing the 

scene into grids with a varying number of partitions, the scene is divided using binary 

partitions, which divides a region into eight octants. Like the subvoxel grids, it 

recursively divides the octants until there are fewer objects in an octant than a 

predefined threshold. 

 
 Devillers[Dev89] proposes creating empty regions by creating maximized axis-

aligned areas void of any objects or containing very few objects. Initially a standard 

uniform grid is constructed. Then macro-regions are found, consisting of sparsely 

populated areas. When a ray traversing the grid encounters a macro-region, objects in 

the region are tested. If no object intersected in the region, the ray continues out of the 

region and into the grid position of the exit point of the macro-region. From this point 

on, the ray continues traversing the grid in the normal fashion, thus simplifying 

calculations in the simple (underpopulated) portions of the scene. Because macro-

regions may overlap, problems may arise when object edges do not lie along principal 

axes. In such cases an overabundance of macro-regions is created to accommodate a 

majority of areas with low density. An example is shown in Figure 2.4. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Because macro-regions may overlap, when an object or group 
of objects occupies an area whose boundary is not close to being 
axis-aligned, an excess of macro-regions may be created. In this 

illustration, the object’s (or group of objects’) area is represented by 
the shaded surface. Macro-regions are represented by rectangular 

edges. To avoid confusion or ambiguity, one of the macro-regions is 
shaded lightly.  
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Finally, Klimaszewski and Sederberg [KS97], apply two of the most common 

acceleration techniques in grid traversal and bounding volume hierarchies to create 

adaptive grids. The algorithm involves voxelizing bounding parallelepipeds that were 

organized using the Goldsmith/Salmon algorithm[GS87]. Prior to inserting objects 

into the bounding hierarchy, a thorough search organizes close objects into single 

bounding boxes. Child bounding boxes are tested to remove any child boxes that 

occupy a large percentage of the parent’s area. This facilitates adaptation to the non-

uniform organization of a scene while taking advantage of the simplicity of scene 

subdivision. Because the research and results reported here are based heavily upon 

this technique, the details of the algorithm are elaborated in chapter 5. 

 

 

A similar algorithm developed independent of adaptive grids is introduced by Cazals 

et al. [CDP95]. Like [KS97], they cluster objects in a scene and voxelize the cluster. 

Large objects are not included in the clustering. Clusters then are inserted into the 

grid in a recursive manner where smaller clusters are inserted into larger clusters that 

completely surround them. 

2.5 Intersection Reduction 
 

As a result of object coherences, neighboring rays are likely to intersect similar 

objects. Therefore, neighboring pixels in an image are likely to have identical or 

similar intensities. This attribute has been described as image coherence, area 

coherence, or pixel coherence. One of the simplest techniques taking advantage of 

image coherence uses adaptive undersampling. An obvious disadvantage to 

undersampling is the loss of information that falls in between samples. This happened 

in images where skinny objects are lost from the image, or the ends of sharply pointed 

objects fall between samples and are cut off.  

 

The most basic recursive undersampling implementation is outlined in [AMS91]. In 

this implementation, a sample is taken at a given interval in both x and y pixel 
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coordinates. Should the four neighboring pixels have similar colors, the intermediate 

pixels are interpolated. Otherwise, either a finer sample is taken and the algorithm is 

repeated recursively or all the intermediate pixels are calculated when the sample 

interval is below a predefined threshold. An example is shown in figure 2.5. 

 

 
  

 
 
 
 

 
Figure 2.5a An undersampling 
example. The boxes represent 
pixels.  Pixels colored gray are 

considered sampled pixels. In this 
case there are 2 sample areas 

shown.  

Figure 2.5b One level of recursion. The 
left area is found incoherent and finer 
samples are taken. The right area is 

found coherent and intermediate pixels 
are interpolated (colored black). 

 

[AMS91] further develops an undersampling technique by introducing error 

checking to avoid the cutoff of sharp edges. Unfortunately the memory 

requirements are high relative to any picture quality gains. 

 

Klimazewski [Kli94] proposes a simpler version of this technique which eliminates 

the recursion from the undersampling algorithm. Area sampling calculates pixel 

colors at certain samples. When there is lack of coherence, all intermediate pixels 

are calculated. 
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Chapter 3: Computer Generated 
Animation 
 

3.1 Traditional Animation 
 
Many of the techniques used to produce computer animation derive from traditional 

animation. Many of the steps required to produce such an animation carry over 

unchanged. Although both use techniques such as storyboarding, soundtracking, 

and modeling, those techniques are outside the scope of the research reported here. 

For more information on traditional animation see [HM76]. 

 

3.2 Modeling and Positioning 
 

A popular method of creating virtual models is to create surfaces using simple 

geometric shapes. Limiting surface models to simple triangles can simulate 

complex non-rigid surfaces effectively -- particularly when shading is included to 

simulate non-flat surfaces. Because of its simplicity, ease of manipulation, and 

 13 
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rendering speed, complex surfaces often are tessellated into triangles or 

quadrilaterals.  

Once a simple model of an object or a portion of an object is available, 

transformations are use to place the portion of the object in a location in the virtual 

scene (or with respect to other portions of the object). These transformations are 

effected by using scaling (S), rotation (R) and finally translations (T) which can 

position objects arbitrarily in the scene. With the triangles or quadrilaterals being 

represented by a series of points (P), a single transformation can be represented as 

 

 

PTRSP ′=      (3.1) 

 

where P′  represents the points after the transform.  

 

This can be expanded as follows: 
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where t  represents the translations, r represents the axis about which to rotate, θ  

represents the rotation angle, s represents the scaling factor, p represents the initial 

points, and p′ represents the transformed points. 

 

Furthermore, a hierarchy of transformations of several levels can be used to place 

simple polygons in the correct scene location. Commonly, one or more levels of 

transformations place the polygon with respect to the object of which it is part. 

Then further transformations place the object in relation to the entire scene. 

 

 

3.3 Keyframing 
 

Once a mechanism for placing objects in the scene is in place, a method of 

describing movement in the scene over time is required. Similar to traditional 

animation, a keyframing technique can be used by modelers to define objects at 

certain intervals and to use other means of defining where the objects are at 

intermediate times. To get intermediate positions, a calculated path is interpolated 

between keyframe positions. Even though the term keyframe is used in computer 

animation, unlike traditional animation the actual positioning at a certain time is 

arbitrary and does not need to fall in line with the timing of the frames, nor do these 

defined moments have to be consistent from object to object. They can be defined 

independent of each object. 

 

A variety of techniques can be used to interpolate intermediate positions, but a 

common technique is to use cubic splines. Cubic splines offer a simple parametric 

means of providing acceptable continuity between intermediate sections joined by a 

keyframe moment while satisfying the variation diminishing property which can 

plague polynomial interpolation. 

 

Two major variations of cubic splines used for modeling and temporal positioning 

have certain desirable properties discussed below. 
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The most popular spline is the Bézier[Bez72] curve. A cubic Bézier curve can be 

defined by four control point. Two control points define the start and end points of 

the curve. The other two control points are used to control the exiting and entering 

tangents at those control points. 

 
  

 
 

Figure 3.1 A Bézier curve. Points P0 and P3 are used in determining the 
start and end points, respectively. Point P0 and P3 are used to 

calculate the tangents at those endpoints. 
 

The Bézier curve can maintain a degree of continuity by making sure that any 

following curve segments use the reverse vector created by the end point and its 

tangent to define the next control point of the following segment. This can be 

controlled easily in any modeling environment beneath the user interface so the 

modeler does not have to consider continuity when creating the curve. 

 

The major benefits of using Bézier curves fall more on the computational side than 

in the ease of use by modelers. The Bézier curve is subdivided easily and satisfies 

the convex hull property.  

 

The other major path defining spline used in modeling is the Catmull-Rom 

spline[CR74] which originally is documented in [Over68]. Some modelers wish 

simply to provide a set of points to be interpolated by the resulting path. Catmull-

Rom splines are an effective solution when the modeler is not concerned with such 

things as tangents or derivatives, but only with moving an object from point “a” to 

point “b” to point “c”. 
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Catmull-Rom splines pass through all of the control points. The tangent at which 

the spline passes through a control point is determined by a vector created by the 

previous and following control points. This requires an initial point and a final point 

that lie outside the path. If the start point is positioned at the same place as the 

initial control point, then the starting point tangent points from the starting point to 

the next control point. 
   

 
 

Figure 3.2 A Catmull-Rom Spline. Points P0 through P4 are interpolated 
control points. Points P-1 and P5 are used to establish the initial and 

ending tangents. Dotted lines are used to try to establish the 
relationship of those initial and final tangents.   

 

A variation of the Catmull-Rom spline allows for more control over the path of the 

spline. The Kochanek-Bartels [KB84] splines are known also as TCB-splines since 

they offer parameters for manipulating the tension, continuity, and bias at any 

control point. All parameters range between -1 and 1. When all values for tension, 

continuity, and bias are zero, the spline degenerates into a Catmull-Rom spline. 

 

A tension value greater than zero tightens the rigidness with which the curve 

follows the control points. With a value less than zero, the curve is loosened. 

Continuity greater than zero relates the incoming tangent to the following control 

point and the outgoing tangent to the preceding control point. Negative continuity 

reverses the relationship relating the incoming with the preceding tangent and the 
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outgoing with the following tangent. The bias parameter maintains the continuity of 

the outgoing and incoming tangents, but adjusts its weight more on the preceding or 

following control point—positive continuity weights the preceding point more 

heavily and a negative number the following point more heavily. 

 

Although these parameters may give the modelers more functionality, they also 

come with more risk. These parameters—particularly the tension and continuity—

can eliminate continuity at the control points. 

 

 

3.4 Rotation Interpolation 
 

Although translation and scaling are represented easily in Cartesian coordinates, as 

is visible in equation 3.2 rotation cannot be presented easily. Complexities are 

introduced when attempting to interpolate between defined rotations. Because 

rotation is not a linear process, attempting to use a linear interpolation scheme 

(Bézier curves can be described as a sequence of linear interpolations) to interpolate 

rotation can result in non-fluid or unnatural movement. 

 

This can be overcome by using quaternions[Ham53] to represent an arbitrary 

rotation in three dimensions. Quaternions are hypercomplex numbers that have one 

real part and three imaginary parts. Quaternions represent an extension of the two-

dimensional representation of rotation using complex numbers as seen in Figure 

3.3. 
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Figure 3.3 2D rotation represented by complex numbers. 
 

The necessity of four parts when extending rotations to three dimensions can been 

seen by representing a quaternion on a unit sphere. Rather than using a point to 

represent the placement on the two-dimensional sphere surface, a simple two-

dimensional object, such as an arrow or a compass spindle can be used as shown in 

Figure 3.4. That spindle can take any orientation at a given point. This shows that 

there is more than a unique rotation for a given point on the unit sphere. To keep the 

spaces consistent, quaternions often are represented for rotation by points on a unit 

hypersphere. 
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Figure 3.4 3D rotation represented by on a unit sphere. 
 

Rotations can be converted easily from Cartesian coordinates to quaternions. 

Rotation about vector [x y z]T by angle θ corresponds to 

 

 kzjyix
2

sin
2

sin
2

sin
2

cos θθθθ
+++             (3.3) 

 

where i, j, and k are the imaginary parts. Interpolation in quaternion space can be 

done using a spherical linear interpolation (slerp)[Sho85]. This creates a straight 

path from one point on the hypersphere to another. A slerp can be represented as: 

 

( )tqqqtqqSlerp 1
1

0010 ),,( −=                                               (3.4) 

 

Similar to how Bézier curves use linear interpolation in Cartesian space, slerps can 

be used in quaternion space to effect a similar curve where the continuity is 

established to produce smooth rotation interpolation. 
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3.5 Camera Positioning and Motion 
 

Camera positioning can be treated much the same way that object positioning is 

treated. Translation is used to position the camera point, and rotation is used to 

orient the look-at and the up vectors. Scaling can be used theoretically to 

manipulate the field of view, but we are aware of no such implementation. 
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Chapter 4: Adapting Adaptive Grids 
and Undersampling to Animation 
 
 

4.1 Bounding Movement 
 
The most challenging task in this work has been the need to bound all movement. 

Even though others have addressed temporal bounding, none have addressed it for 

standard transformations are concerned. 

 

Most of the reported work that addresses temporal bounding includes disclaimers 

such as “One must be careful to insure that each bound completely encloses the 

object for the entire time interval,”[Gla88] but none has presented a means of doing 

so. Rather than address traditional animation positioning, the reported work uses a 

technique friendly to bounding temporally. Even though temporal bounding of 

traditional positioning techniques seems useful in dealing with such features such as 

motion blur, any attempts to find a solution have been left unresolved.  
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Our first attempt at solving this problem uses Newton’s methods where, given the 

derivatives for the paths, the zero crossing could be located using the iterative 

method [SB02]. Unfortunately, the time taken to iterate through this process is so 

large, that even allowing the process to finish is unreasonable. 

 

Our next attempt at bounding movement over time involved a tradeoff between 

bound tightness and quick bound generation. This process involved using interval 

arithmetic to find a loose but quick bound on objects as they move over time. To 

accomplish this, each part of the transformation was bounded and the intervals were 

combined using interval multiplication. Multiplication then was used to combine all 

the transformations. The more multiplications that take place, the more the bound 

can loosen relative to the optimal bound. Bounding each portion of an object’s 

movement involved separate techniques for bounding translation and scale and a 

different technique for bounding rotation.   

 

 

Because the control points for translation and scaling are stored in Cartesian 

coordinate style (x, y, z), a simple bound of the curve that established the movement 

over time will do. One way of realizing this simple bound involves establishing a 

convex hull around the curve. For curves that satisfy the convex hull property, only 

the control points are needed. 

 

For cubic curves that do not satisfy the convex hull property, there is a simple way 

to convert the curves to cubic Bézier curves. Equation 4.1 illustrates the equality 

between a cubic Bézier curve and a Kochanek-Bartels spline. 

 
kbkbbb PTMPTM =                                                  (4.1) 

In this equation, T represents the time parameter vector defined in equation 4.2. 

 

[ ]123 ttt                                                     (4.2) 

 

The Bézier matrix Mb is represented in equation 4.3 as: 

 23 
 

 



www.manaraa.com

 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−

0001
0033
0363
1331

                                              (4.3) 

 

The Kochanek-Bartels spline Mkb is defined by equation 4.4 as:  

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−−
−−+−+−+−

+−+−−+−−

0010
0

232232
22

)0,0()1,0()0,0()1,0(

)0,1()1,1()0,1()0,0()1,1()1,0()0,0()1,0(

)0,1()1,1()0,1()0,0()1,1()1,0()0,0()1,0(

cccc
cccccccc

cccccccc

   (4.4)  

 

where the c values represent the tension, continuity, and bias parameters associated 

with the incoming and outgoing tangents at the starting and ending points. The first 

subscript associates it with either the starting tangent (0) or the ending tangent (1) 

and the second subscript, the difference (subtraction) between the current control 

point, and the next (0) or previous (1) control-point. To be more specific, the 

outgoing tangent  at a starting point  can be defined as: outT0 iP

 

( ) ( )1)1,0(1)0,0(0 −+ −+−= iiiiout PPcPPcT                                   (4.5) 

 

And the incoming tangent  at the ending point  can be defined as: inT1 1+iP

 

( ) ( )iiiiin PPcPPcT −+−= +++ 1)1,1(12)0,1(1                                   (4.6) 

 

From this we can define c in terms of tension τ , continuity γ , and bias β  as: 

 

( )( )( )
2

111
)0,0(

βγτ −−−
=c    ( )( )( )

2
111

)1,0(
βγτ ++−

=c               (4.7a,b)    
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( )( )( )
2

111
)0,1(

βγτ −+−
=c  ( )( )( )

2
111

)1,1(
βγτ +−−

=c            (4.7c,d) 

 

Having defined the necessary components for equation 4.1, the equation can be 

rewritten to solve for the Bézier control points as: 

 

 kbkbbb PMMP 1−=                                                 (4.8) 

 

Where the inverse Bézier matrix is: 1−
bM

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

1111

1
3
2

3
10

1
3
100

1000

                                                     (4.9) 

 

Equation 4.8 reduces further to 
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          (4.10) 

 

This can be solved logically by realizing that the starting points and the ending 

points are control points (the first and fourth control points for Bézier curves and 

the second and third control point for Kochanek-Bartels splines). The second and 

third Bézier control points also are related to the tangents of the starting and end 

points and can be expressed as: 

 

( )bbout PPT 010 3 −=                                               (4.11) 
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( )bbin PPT 321 3 −−=                                              (4.12) 

 

Solving for  and  and substituting the Bézier tangents with the Kochanek-

Bartels tangent definitions results in: 

bP2 bP3

 

( ) ( )[ ] kbkbkbkbkbb PPPcPPcP 101)1,0(12)0,0(1 3
1

+−+−=                     (4.13)  

( ) ( )[ ] kbkbkbkbkbb PPPcPPcP 212)1,1(23)0,1(2 3
1

+−+−−=                   (4.13) 

 

which correspond to rows two and three of the matrix in equation 4.10. 

 

Once splines are converted to cubic Bézier curves, control points can be used to 

establish bounds on the curve.  Because Bézier curves are easily subdivided, bounds 

can be tightened further because the increase in control points more closely fit the 

curve. 

 

Rotation is more difficult. Because rotation interpolation is not established in 

Cartesian coordinates, bounding its movement is not trivial. Keyframe interpolation 

points often are mapped into quaternions space. Once they are mapped in 

quaternion space, control points are calculated to establish the curve interpolation in 

that space. Spherical Bézier (sbez) curves are established similar to their Cartesian 

counterparts.  They simply use a series of slerps to establish any point on the curve. 

 

Some fundamental properties of quaternions are used to establish sbez control 

points. (For more information, see [Eber00]). The derivative of a slerp (equation 

3.4) can be written as 

 

( ) ( )1
1

01
1

0010 log),,( qqqqqtqqpsler t −−=′                                   (4.14) 

 

This means that the tangent for spherical lines can be established at t=0 as: 
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( )1
1

0010 log)0,,( qqqqqpsler −=′                                        (4.15) 

 

Besides this, the incoming and outgoing tangents can be calculated for the 

Kochanek-Bartels spline (our originally inputted keyframes). 

 
 ( ) ( )1

1
0)0,0(2

1
1)1,0(0 loglog qqcqqcT kbkbkbout

−− +=                               (4.15) 

( ) ( )2
1

1)0,1(3
1

2)1,1(1 loglog qqcqqcT kbkbkbin
−− +=                                (4.16) 

 

Along with this, Bézier control quaternions can be established knowing the tangents 

are related to a Bézier in quaternion space. 

 

( )bbbout qqqT 1
1

000 log3 −=                                           (4.17) 

( )bbbin qqqT 3
1

231 log3 −=                                           (4.18) 

 

The missing Bézier control quaternions can be calculated using the tangent 

equations from both the Kochanek-Bartels base tangents and the spherical Bézier 

tangents. 
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Using the Bézier control quaternions will bound any movement to the inside of the 

convex hull on the unit hypersphere. Unfortunately this bound does not create a 

bound for the movement in Cartesian coordinates. Since we are not dealing with a 

flat surface in the case of a hypersphere, an internal point may elevate above the 

edge of the convex hull and hence has the potential of producing internal extrema as 
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demonstrated in figure 4.1. So although these Bézier control points are useful in 

determining the bounds, further work remains to be done and is described below. 

 

 

 

Figure 4.1 An example of how the convex hull of a Bézier on a sphere 
may not represent all extrema. 

 

 

A useful approach is to find extrema along the spherical line created between 

control quaternions as shown if figure 4.2. 

 
Figure 4.2 Square dots represent the extrema found along the convex 

hull of  a spherical Bézier curve. The two views represent the same 
object viewed from different angles. 

 

This can be calculated using the derivative of a slerp. A slerp may be represented in 

terms of the angle θ  between the two quaternions. 

 

( ) ( )( )
θ

θθ
sin

sin1sin,, 10
10

tqtqtqqslerp +−
=                             (4.21) 
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Its derivative is given by 

 

( ) ( )( )( )
θ

θθθ
sin

1coscos,, 01
10

tqtqtqqpsler −−
=′                          (4.22) 

 

Equating the derivative to zero and solving for t gives us the extrema along the 

slerps. We use the property 

 

 

 bababa sinsincoscos)cos( +=− .                                 (4.23) 

 

Using equation (4.23) we find that 

 

0sinsincoscoscos 001 =−− θθθθθ tqtqtq                          (4.24) 

 

Then variable t is isolated on one side of the equation and equation 4.25 is obtained. 

 

( )
θ

θθ cotcsctan 1
1

0
1 −

=
−− qqt                                     (4.25) 

 

Once we have any extrema along the convex hull, we can use slerps recursively to 

connect extrema found along the original slerps. This provides us with any internal 

extrema as shown in figure 4.3. 
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Figure 4.3 Square dots represent the extrema found along the convex 

hull of a spherical Bézier curve. The two lines through the convex 
hull represent slerps traveling along an extremum. 

 

Although not representable on a three-dimensional sphere, another level of 

recursion may be necessary to find all internal extrema. 

 

Once all potential extrema are located, control points and extrema are used to place 

bounds on x, y, z and θ. These bounds then are used to establish bounds for the 

rotation matrix found in equation 3.2. Note that cos θ and sin θ are bound by the 

end points and at any intermediate crossing by 1 at cos 0, by -1 at cos π, by 1 at 

sin ,
2
π  and by -1 at sin .

2
3π  

 

Now that the bounds for the individual translation, rotation, and scale matrices are 

available, their bounds can be multiplied together using interval algebra. Once all 

the transformation matrices are multiplied together, they are multiplied by the 

bound of the initial object giving us a loose bound on the object as it moves over 

time. 

 

4.2 Exploiting Object Temporal Bounds 
 
To exploit temporal coherence, the temporal bounds are treated initially as simple 

objects in the scene and therefore can be placed in a hierarchy for ray traversal. 
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Once the hierarchy is established, rays are cast through the scene to establish any 

possible intersection with the temporal bounds. A set of possible ray-object 

intersections is kept for each ray. Should the number of possible ray-object 

intersections exceed a predetermined threshold, the set is discarded and no further 

temporal bound tests are performed. Once the sets have been established for each 

ray, standard ray tracing is performed for each frame. For those rays that had sets 

below the cardinality threshold, no hierarchy traversal is used on the primary ray. In 

this case each object in the set is tested for the closest intersection. When a ray’s set 

cardinality exceeds the threshold, a regular hierarchy traversal is used. 

 

 

Because the initial temporal bounds has limits on the number of intersection tests 

that it will perform, and should be a quick and easy means of finding initial 

intersections, a simple voxel grid is used for placing objects in the scene, reducing 

the amount of memory used and time necessary to generate the traversal structures. 

In order to compute reflection, refraction, and shadow ray intersections, normal 

hierarchy traversal is used. 

 

To accommodate camera movement, and therefore ray movement, the camera is 

considered static. Any camera transformation is performed inversely on the objects 

in the scene. This simplifies the bound and intersections calculations. Of course, 

any camera movement has a large negative impact on the frame-to-frame and inter-

frame pixel coherence of an animation. 

 

Camera movement in virtual scenes may be more likely than in traditional filmed 

scenes due to the absence of physical limitations associated with moving a physical 

camera. However, diverging too much from tradition may counter the virtual 

animation’s attempt to mimic reality. A leading producer of virtual animated films 

has stated that virtual animators are careful to limit camera movement [BP03]. 
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4.3 Extending Undersampling Temporally 
 
Extending undersampling temporally is a simple task of extending the initial frame 

sample interval on top of the initial inter-pixel sample interval. This treats the frame 

dimension as three-dimensional so that pixels have neighbors in the x, y, and frame 

directions. This means that pixels that fall in the x, y, and frame intervals are 

sampled to look for any coherent regions and to eliminate the calculations necessary 

for rendering those coherent regions. 

 

 

In this case, area sampling proposed in [Kli94] offers a basis where colors are 

calculated at x and y intervals and further extended to sample inter-frame at the 

same interval as shown in Figure 4.4 

 

 
Figure 4.4 Dark cubes represent sampled pixels. Light cubes represent 

intermediate pixels. 

y 

x

Time/frame

 
Because region interpolation is now dependent on 8 sampled pixels instead of 4 

being coherent, and if we assume a random pixel color, there is half the chance that 

an area will be determined to be coherent. Fortunately, pixel color is not random but 

is related closely to neighboring pixels in not only x and y, but also between frames. 

 

When extending the undersampling technique, the ratio of sampled pixels to total 

pixels is reduced from 4:(i+1)2 to 8:(i+1)3 where i is the interval of samples. Any 

interval greater than one will have a reduced ratio that increases as i increases. Thus 

when there is substantial three-dimensional pixel coherence, temporal 

 32 
 

 



www.manaraa.com

 

undersampling will interpolate more pixels than traditional two-dimensional 

undersampling. 

 

4.4 Combining Adaptive Grids with Undersampling 
 
Although the temporal undersampling technique described in section 4.3 can be 

combined with the technique described in section 4.2 for temporal adaptive grids, 

there is a more complimentary technique that combines the concepts of 

undersampling and temporal adaptive grids. 

 

 

The temporal adaptive grid technique attempts to perform an initial scan for object 

coherence which can simplify the final calculations in raytracing. One approach is 

to take an initial sample where there is some interval between the x and y pixels. 

Having calculated an initial sample, in regions of coherence, the sampled object is 

used to determine the initial intersection. In regions where there is no such 

coherence, standard raytracing techniques are used. This reduces the number of 

initial temporal bound intersection calculations which in turn reduces the initial 

calculations. It also reduces the number of object intersections that must be stored, 

reducing the memory usage.
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Chapter 5: Results 
 
 

5.1 Specifications  
 

All tests were performed on a Dell Dimension 8400 with an Intel Pentium® 4 

Processor 640 with hyper-threading technology with a clock rate of 3.2 GHz. The 

tests did not attempt to take advantage of the threading technology, utilizing only 

one thread. The system included one gigabyte of RAM. The operating system used 

was a Red Hat Fedora Core 3 Linux distribution with the 2.6.9 kernel. The code 

was written in C++ but with limited use of C++ functionality. The code was 

compiled with the 3.4.3 gnu compiler (gcc). 

 
Table 5.1 lists test scenes and reports several of their properties. 
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Scene Number of 

objects  

Number of 

frames  

Resolution Camera 

movement 

Cubes Spheres: 512 

Cones: 768 

24 256 by 256 Translation for 

initial 

positioning 

Common Polygons:11622 500 512 by 512 Translation, 

rotation for 

initial 

positioning 

Museum Polygons:10143 

Cones:8 

Animated 

Triangles: 64 

300 800 by 600 Translation and 

scaling 

Kitchen Triangles:110561 800 800 by 600 Translation and 

rotation 

 

Table 5.1 Test scenes and their properties. 

 

The Cubes scene is an extension of the Akimoto Cube [AMS91] where one cube 

was insufficient for this testing, so several cubes were grouped together and 

animated. In this scene the camera is static, but the objects revolve around the 

center of their mass. The Common scene has 3 familiar static objects—the Utah 

teapot, a Beethoven bust, and a cow.  While the objects are static, the camera is 

translated across the scene and the animation takes place. The Museum and Kitchen 

scenes are publicly available scenes from [LAM03]. 

 

 

We wrote the ray tracer from scatch, but used the AFF file format whose parser is 

available at [LAM03]. We produced a common library of ray tracing techniques 

and used this library to implement the different variations of speedup techniques 

explored below. Bounding volumes and voxel grids were first explored, follow by 
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subvoxel grids.  Building on top of these, adaptive grids were implemented and 

extended to take advantage of temporal coherence. Finally, undersampling 

techniques were explored. 

 

5.2 Adaptive Grid Exploration 
  After completing the basic raytracer, an attempt was made to replicate the work 

reported in adaptive grids[KS97]. After some time and without success in 

replicating the results, the original author was contacted. We successfully located an 

implementation which captures his technique. 

 

The implementation originally did not replicate the results because [GS87]  

performs a greedy local search for an adequate place to insert objects into the 

hierarchy. Although [KS97] attempted to emphasize the “minimum surface area” 

insertion criteria, the search technique for the minimum surface area was not 

distinguished. Because adaptive grids did not specify the search technique, it was 

assumed that it used the logarithmic localized search found in [GS87]. The other 

possibility would be to use the optimal n2 exhaustive search. Upon review of 

adaptive grids source code and comparison of results, the exhaustive search 

establishes a hierarchy that is traversed much more efficiently than by using the 

localized logarithmic search, significantly reducing the computation time required 

for a frame. With the merging process reducing the number of objects prior to the 

hierarchy generation, the hierarchy generation computation differences are reduced. 

Upon acquiring this information, the implementation results were consistent with 

adaptive grids. 

  

The merging process is an area of concern for adaptive grids. One of the 

assumptions that drives adaptive grids is that objects are dispersed statistically 

throughout the scene in such a way that objects merge quickly, reducing the number 

of objects that must be searched as the merging process proceeds. Because the 

merging process is (worst case) order n3, the potential for a merging bottleneck 
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increases. This may be the case particularly as scene complexity grows as the 

number of objects is increased and the optimality of the object dispersion is 

reduced. To speed up this process, a scene is sorted  initially by voxelizing the 

scene and then by merging objects local to each voxel. After some iterations of this 

process, the merging process is performed on the entire scene. In the spirit of 

[CDP95], the entire scene is checked initially for large objects. Should their surface 

area be large enough with respect to the entire scene, the objects are inserted into 

the root bounding box. 

 

 

In response to concerns raised in [KWC97], we implemented both adaptive grids 

and subvoxel grids [JW89]. A sub-voxel creation threshold of 12 was used for the 

subvoxel grids. For all adaptive grids comparisons, no subvoxels were created. A 

merging threshold of 2 was used, and a parent-child ratio of 0.1 was used for 

merging with its parent. That same ratio was used to place large objects in the root 

node. 

 

Results are presented in table 5.2 
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Scene Subvoxel grid Adaptive grids 

Cubes 

Hierarchy building time 

average 

0 0 

Hierarchy building time 

standard deviation 

0 0 

Ray tracing time average 9.805833 seconds 10.71333333 seconds 

Ray tracing time standard 

deviation 

0.111508 0.164413759 

Maximum memory usage 4984 KB 4416 KB 

Common 

Hierarchy building time 

average 

0.006333 seconds 0.16422 seconds 

Hierarchy building time 

standard deviation 

0.005028 0.005181 

Ray tracing time average 16.03384 seconds 22.62176 

Ray tracing time standard 

deviation 

2.402787 
 

4.002093 

Maximum memory usage 11364 11076 

 

Table 5.2 Computation time and memory comparison of Subvoxel grids and Adaptive grids. 

 

In these cases, both the subvoxel technique and the adaptive grids use an 

insignificant amount of time generating their scene hierarchy. In these cases, the 

subvoxel grids were faster, but that adaptive grids used less memory. These results 

are consistent with results found in [HS99] 

 

The subvoxels hierarchy generation technique has similar but opposite downfalls to 

adaptive grids; should the scene have area of high object cluster, the time and 

memory required to build the scene hierarchy is increased greatly. Adaptive grids 

builds better grids when the objects are clustered closer together because objects are 
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merged into the same hierarchy. The merging time and grid traversal time are 

increased when object are not close enough to merge. Subvoxel grids must 

subdivide voxels until all voxels have fewer objects in them than the predefined 

threshold. This can produce a large number of voxels, thus increasing the memory 

usage and the grid traversal time. This information could be used beforehand in 

determining which technique should be used. 
  

5.3 Temporally Adaptive Grids 
 

In order for temporal adaptive grids to be successful, the statistical layout of the 

temporal scene must be similar to the layout of a standard scene. The surface area 

of the object’s bounding box is particularly important because that determines the 

likelihood of the bounding box being hit. Any large increase in the size of the 

temporal bounding box compared to the bound box of a static object will increase 

the false positives where the temporal bounding box is intersected by a ray but the 

object is not intersected. 

 

Table 5.3 compares the ratio of temporal bounding boxes of the object as it moves 

through several frames to the bounding boxes corresponding to the object in a 

single frame. 

 

Scene Ratio of surface areas Standard Deviation 

Cubes 0.648681 0.158358 

Common 0.071445 0.128451 

Museum 0.008721 0.029677 

Kitchen 0.003976 0.027166 

Table 5.3 Comparison of temporal bounding box surface area to their equivalent bounding 
box for the object in a single frame. 

 

The Cubes scene is the only scene where the camera is stationary. The Common 

scene has a high ratio value (low surface area difference) compared to the Museum 
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and Kitchen scenes, because there is no camera rotation and the objects in the scene 

are static. Unfortunately it is still a low ratio value when compared with a static 

camera (as in the Cubes scene). The camera movement even without rotation 

produces large temporal bounds significant enough to remove any suggestion of 

tightness of bounds around the object and its movement. The Museum scene and 

the Kitchen scene were built deliberately to limit the coherence it the scene, so their 

bounding ratios were expected to be lower than an average scene.  The worse the 

bounding ratios, the less opportunity there is for speedup. 

 

  

Table 5.4 compares rendering times and memory usage of temporally adaptive 

grids. Temporally adaptive grids were tested with a frame interval of 4 and a ray 

caching threshold of 30. 
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Scene Temporal Adaptive grids Adaptive grids 

Cubes 

Ray tracing time average 10.292 seconds 10.713 seconds 

Total time 10.439 seconds 10.713 seconds 

Common 

Ray tracing time average 21.856 seconds 22.621 seconds 

Total time 28.871 seconds 22.791 seconds 

Museum 

Ray tracing time average 87.907 seconds 85.242 seconds 

Total time 88.950 seconds 85.37 seconds 

Kitchen 

Ray tracing time average 865.39 seconds 656.79 seconds 

Total time 972.95 seconds 660.52 seconds 

 

Table 5.5 Comparison of temporal adaptive grids and adaptive grids rendering times. 

 
Even with the poor bounds, the rendering times are similar to the adaptive grids 

times, with minor improvements in the general ray tracing time on some scenes as 

shown in table 5.5.  Because a larger bound intersects more voxels, more time is 

needed to insert the objects in the voxels. Should these initial temporal bounding 

boxes be improved, there is potential for more time improvement in 1) hierarchy 

generation time because the initial boxes intersect few voxels, 2) the initial temporal 

tracing time because there are fewer intersection tests in each voxel traversed and 3) 

The final rays traced because there should be fewer ray traversals when fewer false 

positive temporal box intersections push the count above the threshold for grid 

traversal.  

 

The poor temporal bounds also create memory issues. The more voxels that a 

bounding box intersects, the more memory is required to store pointers to the object 
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represented by the bounding box.  Figure 5.6 show memory usage in temporally 

adaptive grids and adaptive grids. While adaptive grids memory was relatively 

constant, temporally adaptive grids usage varied. 

 

Maximum memory usage Temporally adaptive 

Grids 

Adaptive grids 

Cubes 6332KB 4416KB 

Common 131MB 11 MB 

Museum 92MB 18 MB 

Kitchen 2683MB 103MB 

 

Table 5.6 Memory comparison of adaptive grids and temporally adaptive grids. 

 
It should be noted that the Kitchen scene’s memory use exceeded the physical 

memory available (1024 MB) and also came close to filling the virtual memory 

available. Although the CPU time was used in all our timing, this appears to have 

an effect on the timing result of the Kitchen scene in Table 5.4. This explains why 

other scene times were similar to adaptive grid but the Kitchen scene is noticeably 

higher. 

 

5.4 Undersampling 
 

The second area explored is the use of undersampling in ray tracing. First a 

comparison of intra-frame to inter-frame sampling is explored. Finally an extension 

of temporally adaptive grids is explored. For these experiments, a sample interval of 

4 is used.  The error is calculated similarly to [Klim94] and [AMS91].  The error 

threshold was set to 3 which is equivalent to 1 for each color channel.  

 

Table 5.7 compares two-dimensional sampling with the three-dimensional 

sampling. 
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Scene Two-

dimensional 

rendering time 

(average) 

Two-

dimensional 

interpolated 

pixels 

(average) 

Two-

dimensional 

memory usage 

Three-

dimensional 

rendering time 

(average) 

Three-

dimensional 

interpolated 

pixels 

(average) 

Three-

dimensional 

memory usage 

Cubes 9.1320 35644 5252KB 8.9800 30293 7012KB 

Common 13.680 196245 11284KB 17.720 145404 48968KB 

Museum 33.051 338247 18880KB 72.310 376358 31156KB 
 

Table 5.7 A comparison of two-dimensional sampling and three-dimensional sampling where 
the average rendering time per frame in seconds and average number of interpolated pixels 
per frame are shown along with the maximum memory usage. 

  

Sampling in three dimensions sometimes produces more interpolated pixels than in 

two-dimensional sampling. However, the reverse is also true. Although the museum 

scene had more pixels interpolated on average, the closing frames had a large drop 

in the number of pixels interpolated.  This also produced poor rendering times 

where some of the final frames where close to three times as slow as previous 

frames. So although the average number of interpolated pixels is higher than the 

two-dimensional sample, its times are close to standard adaptive grids because of 

the slowdown of these last few frames. 

There is a correlation between the camera movement and the speedups attained.  

 

Interpolation Error  Two-dimensional 

sampling 

Three-dimensional 

sampling 

Cubes 0.043938 0.0068721 

Common 0.076328 0.065085 

Museum 0.21104 0.42786 

Table 5.8 A comparison of two-dimensional sampling error and three-dimensional sampling 
error where it is the average difference in a color channel value that can vary between 0 and 
255. 

 

The three-dimensional sampling has as good as if not better error rates than its two  
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-dimensional equivalent as seen in table 5.8. Both have acceptable error rates as 

neither differs on average more that one pixel channel intensity which generally is 

indiscernible to the human eye. 

 

Finally table 5.9 shows the results from rendering done with temporally adaptive 

grids with temporal undersampling. 
  

Scene Rendering 

Time 

Number of 

Rays 

Interpolated 

4D intial 

intersect time 

Cubes 9.740 33006.22 0.02 

Common 32.45 0 0.13 

Museum 105.04 16255.4 0.95 

Table 5. 9 Results of temporally adaptive grids with temporal undersampling. 

 

The temporally adaptive grids with temporal undersampling have a quicker initial 

intersection test than temporally adaptive grids because fewer tests are performed. 

However, fewer temporally coherent regions are found. The Common scene found 

no coherent regions. The Museum scene also has large sections of frames where no 

coherent regions are found. This means no speedups of the kinds that are associated 

with standard temporally adaptive grids. Due to the large lack of coherence in the 

temporal samples, fewer rays where cached to skip traversal. This meant that little 

or no speedup was achieved and further time costs were incurred creating the 

hierarchies and initial traversal. 

 

5.5 Conclusion 
 
We have designed and implemented a bounding technique that quickly produces 

bounds around object hierarchies as they are transformed over time. While the 

bounds are not optimal, our work represents an important step toward producing 

near optimal temporal bounds. 
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Even with the poor bounds, we were able to produce speedups on the order of 4% 

by taking advantage of temporal coherence in cases when camera movement is 

limited; improvements are greatest when there is minimal camera movement in the 

animation. 

Should the efficiency of the temporal bounds be improved, we anticipate that these 

speedups will improve further.   

 

Undersampling can also be effective in reducing rendering times when sampling 

inter-frame without increasing the interpolated pixel value error. This is especially 

true when object and camera movement is minimized. 

 

Generally, camera movement greatly reduces the temporal coherence in a scene. It 

was our original intent to produce techniques that allow for camera movement so as 

to not limit the application of the techniques. We have concluded that scenes with 

camera movement lack the temporal coherence sufficient to warrant their inclusion 

since little improvement is possible using these techniques. However, absent of 

camera movement,  techniques that exploit temporal coherence can reduce the 

rendering time of animations. Knowing beforehand the extent of movement of 

objects and cameras facilitates a priori determination of the relative appropriateness 

of temporal acceleration techniques vs. standard acceleration techniques. 

 

5.6 Future Work 
 

The majority of future work will involve improvements to the bounding of object 

movement. While Newton’s method is too slow and interval algebra is 

insufficiently accurate, a combination offers potential.  Guidance may be offered by 

[Nor05] where interval algebra is used as introduced in this work, but is extended to 

add checks to prevent error from increasing unacceptably. Additionally, more 

calculations done prior to establishing the interval may reduce the opportunity for 

error. 
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Because transformation of the camera and objects in the scene is directly related to 

temporal coherence, establishing a transformation metric may be beneficial in 

deciding if it is appropriate to use a method that takes advantage of temporal 

coherence. Prior to a scene being rendered, the transformation metric could be 

calculated and if below a certain threshold, then the temporal coherence is 

exploited. Scene that do not show sufficient promise relative to the metric could be 

rendered with standard techniques.    
 

 
 
Another approach not implemented in this work would bound ray movement in the 

scene and perform a temporal ray bound-object bound intersection to establish 

initial temporal intersections. Because temporal adaptive grids require a ray to be 

static, when there is camera movement each object is moved inversely to the 

camera movement to simulate the camera movement.   This increase the number of 

transformations performed on each object.  If the camera is free to move and the 

rays are not static, a bound could be placed on the ray and intersected with the 

scene. This would reduce the transformations on the objects, and most likely would 

improve the object hierarchy. Unfortunately it is less elegant to implement.  Further, 

the ray movement has the potential to create a very large bound.  

 

It is unknown if optimally temporally bounded objects have the statistically 

beneficial properties for object hierarchy generation that regular scenes have. A 

study of the scene properties of objects as they move may be beneficial.  
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Appendix – Sample Frames from 
Animations. 
 

 
Cube frame 0 

 
Cube frame 5 
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Cube frame 10 

 
Cube frame 20 

 
Cube frame 15 

  

Cube frame 23 
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Common frame 0 Common frame 100 

   
Common frame 200 Common frame 300 

   
Common frame 400 Common frame 499 
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Museum frame 0 

 
Museum frame 50 
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Museum frame 100 

  
Museum frame 150 
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Museum frame 200 

 
Museum frame 250 
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Kitchen frame 0 

 
Kitchen frame 100 
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Kitchen frame 200 

 
Kitchen frame 300 
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Kitchen frame 400 

 
Kitchen frame 500 
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Kitchen frame 600 

 
Kitchen frame 700 
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Kitchen frame 799 
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